Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    LKMT: Linguistics Knowledge-Driven Multi-Task Neural Machine Translation for Urdu and English

    Muhammad Naeem Ul Hassan1,2, Zhengtao Yu1,2,*, Jian Wang1,2, Ying Li1,2, Shengxiang Gao1,2, Shuwan Yang1,2, Cunli Mao1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 951-969, 2024, DOI:10.32604/cmc.2024.054673 - 15 October 2024

    Abstract Thanks to the strong representation capability of pre-trained language models, supervised machine translation models have achieved outstanding performance. However, the performances of these models drop sharply when the scale of the parallel training corpus is limited. Considering the pre-trained language model has a strong ability for monolingual representation, it is the key challenge for machine translation to construct the in-depth relationship between the source and target language by injecting the lexical and syntactic information into pre-trained language models. To alleviate the dependence on the parallel corpus, we propose a Linguistics Knowledge-Driven Multi-Task (LKMT) approach to… More >

  • Open Access

    ARTICLE

    IMTNet: Improved Multi-Task Copy-Move Forgery Detection Network with Feature Decoupling and Multi-Feature Pyramid

    Huan Wang1, Hong Wang1, Zhongyuan Jiang2,*, Qing Qian1, Yong Long1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.053740 - 12 September 2024

    Abstract Copy-Move Forgery Detection (CMFD) is a technique that is designed to identify image tampering and locate suspicious areas. However, the practicality of the CMFD is impeded by the scarcity of datasets, inadequate quality and quantity, and a narrow range of applicable tasks. These limitations significantly restrict the capacity and applicability of CMFD. To overcome the limitations of existing methods, a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach. Firstly, this study formulates the objective task and network relationship as an optimization problem using transfer learning. Furthermore, it thoroughly discusses… More >

  • Open Access

    ARTICLE

    GDMNet: A Unified Multi-Task Network for Panoptic Driving Perception

    Yunxiang Liu, Haili Ma, Jianlin Zhu*, Qiangbo Zhang

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2963-2978, 2024, DOI:10.32604/cmc.2024.053710 - 15 August 2024

    Abstract To enhance the efficiency and accuracy of environmental perception for autonomous vehicles, we propose GDMNet, a unified multi-task perception network for autonomous driving, capable of performing drivable area segmentation, lane detection, and traffic object detection. Firstly, in the encoding stage, features are extracted, and Generalized Efficient Layer Aggregation Network (GELAN) is utilized to enhance feature extraction and gradient flow. Secondly, in the decoding stage, specialized detection heads are designed; the drivable area segmentation head employs DySample to expand feature maps, the lane detection head merges early-stage features and processes the output through the Focal Modulation More >

  • Open Access

    ARTICLE

    Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems

    Mohammad Aldossary1,*, Hatem A. Alharbi2, Nasir Ayub3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.050862 - 20 June 2024

    Abstract Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure, thereby revolutionizing computer processes. However, the rising energy consumption in cloud centers poses a significant challenge, especially with the escalating energy costs. This paper tackles this issue by introducing efficient solutions for data placement and node management, with a clear emphasis on the crucial role of the Internet of Things (IoT) throughout the research process. The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around… More >

  • Open Access

    ARTICLE

    Target Detection Algorithm in Foggy Scenes Based on Dual Subnets

    Yuecheng Yu1,*, Liming Cai1, Anqi Ning1, Jinlong Shi1, Xudong Chen2, Shixin Huang1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1915-1931, 2024, DOI:10.32604/cmc.2024.046125 - 27 February 2024

    Abstract Under the influence of air humidity, dust, aerosols, etc., in real scenes, haze presents an uneven state. In this way, the image quality and contrast will decrease. In this case, It is difficult to detect the target in the image by the universal detection network. Thus, a dual subnet based on multi-task collaborative training (DSMCT) is proposed in this paper. Firstly, in the training phase, the Gated Context Aggregation Network (GCANet) is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes. In the test phase, only the… More >

  • Open Access

    ARTICLE

    The Entity Relationship Extraction Method Using Improved RoBERTa and Multi-Task Learning

    Chaoyu Fan*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1719-1738, 2023, DOI:10.32604/cmc.2023.041395 - 29 November 2023

    Abstract There is a growing amount of data uploaded to the internet every day and it is important to understand the volume of those data to find a better scheme to process them. However, the volume of internet data is beyond the processing capabilities of the current internet infrastructure. Therefore, engineering works using technology to organize and analyze information and extract useful information are interesting in both industry and academia. The goal of this paper is to explore the entity relationship based on deep learning, introduce semantic knowledge by using the prepared language model, develop an More >

  • Open Access

    ARTICLE

    PLDMLT: Multi-Task Learning of Diabetic Retinopathy Using the Pixel-Level Labeled Fundus Images

    Hengyang Liu, Chuncheng Huang*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1745-1761, 2023, DOI:10.32604/cmc.2023.040710 - 30 August 2023

    Abstract In the field of medical images, pixel-level labels are time-consuming and expensive to acquire, while image-level labels are relatively easier to obtain. Therefore, it makes sense to learn more information (knowledge) from a small number of hard-to-get pixel-level annotated images to apply to different tasks to maximize their usefulness and save time and training costs. In this paper, using Pixel-Level Labeled Images for Multi-Task Learning (PLDMLT), we focus on grading the severity of fundus images for Diabetic Retinopathy (DR). This is because, for the segmentation task, there is a finely labeled mask, while the severity… More >

  • Open Access

    ARTICLE

    A Multi-Task Motion Generation Model that Fuses a Discriminator and a Generator

    Xiuye Liu, Aihua Wu*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 543-559, 2023, DOI:10.32604/cmc.2023.039004 - 08 June 2023

    Abstract The human motion generation model can extract structural features from existing human motion capture data, and the generated data makes animated characters move. The 3D human motion capture sequences contain complex spatial-temporal structures, and the deep learning model can fully describe the potential semantic structure of human motion. To improve the authenticity of the generated human motion sequences, we propose a multi-task motion generation model that consists of a discriminator and a generator. The discriminator classifies motion sequences into different styles according to their similarity to the mean spatial-temporal templates from motion sequences of 17… More >

  • Open Access

    ARTICLE

    MTC: A Multi-Task Model for Encrypted Network Traffic Classification Based on Transformer and 1D-CNN

    Kaiyue Wang1, Jian Gao1,2,*, Xinyan Lei1

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 619-638, 2023, DOI:10.32604/iasc.2023.036701 - 29 April 2023

    Abstract Traffic characterization (e.g., chat, video) and application identification (e.g., FTP, Facebook) are two of the more crucial jobs in encrypted network traffic classification. These two activities are typically carried out separately by existing systems using separate models, significantly adding to the difficulty of network administration. Convolutional Neural Network (CNN) and Transformer are deep learning-based approaches for network traffic classification. CNN is good at extracting local features while ignoring long-distance information from the network traffic sequence, and Transformer can capture long-distance feature dependencies while ignoring local details. Based on these characteristics, a multi-task learning model that… More >

  • Open Access

    ARTICLE

    Multi-Task Learning Model with Data Augmentation for Arabic Aspect-Based Sentiment Analysis

    Arwa Saif Fadel1,2,*, Osama Ahmed Abulnaja1, Mostafa Elsayed Saleh1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4419-4444, 2023, DOI:10.32604/cmc.2023.037112 - 31 March 2023

    Abstract Aspect-based sentiment analysis (ABSA) is a fine-grained process. Its fundamental subtasks are aspect term extraction (ATE) and aspect polarity classification (APC), and these subtasks are dependent and closely related. However, most existing works on Arabic ABSA content separately address them, assume that aspect terms are preidentified, or use a pipeline model. Pipeline solutions design different models for each task, and the output from the ATE model is used as the input to the APC model, which may result in error propagation among different steps because APC is affected by ATE error. These methods are impractical… More >

Displaying 1-10 on page 1 of 22. Per Page