Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    YOLO-MFD: Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head

    Zhongyuan Zhang, Wenqiu Zhu*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2547-2563, 2024, DOI:10.32604/cmc.2024.048755 - 15 May 2024

    Abstract Remote sensing imagery, due to its high altitude, presents inherent challenges characterized by multiple scales, limited target areas, and intricate backgrounds. These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery. Additionally, these complexities contribute to inaccuracies in target localization and hinder precise target categorization. This paper addresses these challenges by proposing a solution: The YOLO-MFD model (YOLO-MFD: Remote Sensing Image Object Detection with Multi-scale Fusion Dynamic Head). Before presenting our method, we delve into the prevalent issues faced in remote sensing imagery… More >

  • Open Access

    ARTICLE

    Image Inpainting Technique Incorporating Edge Prior and Attention Mechanism

    Jinxian Bai, Yao Fan*, Zhiwei Zhao, Lizhi Zheng

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 999-1025, 2024, DOI:10.32604/cmc.2023.044612 - 30 January 2024

    Abstract Recently, deep learning-based image inpainting methods have made great strides in reconstructing damaged regions. However, these methods often struggle to produce satisfactory results when dealing with missing images with large holes, leading to distortions in the structure and blurring of textures. To address these problems, we combine the advantages of transformers and convolutions to propose an image inpainting method that incorporates edge priors and attention mechanisms. The proposed method aims to improve the results of inpainting large holes in images by enhancing the accuracy of structure restoration and the ability to recover texture details. This… More >

  • Open Access

    ARTICLE

    Visual Enhancement of Underwater Images Using Transmission Estimation and Multi-Scale Fusion

    R. Vijay Anandh1,*, S. Rukmani Devi2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 1897-1910, 2023, DOI:10.32604/csse.2023.027187 - 01 August 2022

    Abstract The demand for the exploration of ocean resources is increasing exponentially. Underwater image data plays a significant role in many research areas. Despite this, the visual quality of underwater images is degraded because of two main factors namely, backscattering and attenuation. Therefore, visual enhancement has become an essential process to recover the required data from the images. Many algorithms had been proposed in a decade for improving the quality of images. This paper aims to propose a single image enhancement technique without the use of any external datasets. For that, the degraded images are subjected… More >

  • Open Access

    ARTICLE

    Underwater Diver Image Enhancement via Dual-Guided Filtering

    Jingchun Zhou1,*, Taian Shi1, Weishi Zhang1,*, Weishen Chu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 1063-1081, 2022, DOI:10.32604/cmes.2022.019447 - 14 March 2022

    Abstract The scattering and absorption of light propagating underwater cause the underwater images to present low contrast, color deviation, and loss of details, which in turn make human posture recognition challenging. To address these issues, this study introduced the dual-guided filtering technique and developed an underwater diver image improvement method. First, the color distortion of the underwater diver image was solved using white balance technology to obtain a color-corrected image. Second, dual-guided filtering was applied to the white balanced image to correct the distorted color and enhance its details. Four feature weight maps of the two More >

Displaying 1-10 on page 1 of 4. Per Page