Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (121)
  • Open Access

    ARTICLE

    Industrial Fusion Cascade Detection of Solder Joint

    Chunyuan Li1,2,3, Peng Zhang1,2,3, Shuangming Wang4, Lie Liu4, Mingquan Shi2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1197-1214, 2024, DOI:10.32604/cmc.2024.055893 - 15 October 2024

    Abstract With the remarkable advancements in machine vision research and its ever-expanding applications, scholars have increasingly focused on harnessing various vision methodologies within the industrial realm. Specifically, detecting vehicle floor welding points poses unique challenges, including high operational costs and limited portability in practical settings. To address these challenges, this paper innovatively integrates template matching and the Faster RCNN algorithm, presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques. This algorithm meticulously weights and fuses the optimized features of both methodologies, enhancing the overall detection capabilities. Furthermore,… More >

  • Open Access

    PROCEEDINGS

    Ultrafast Self-Transport of Multi-Scale Droplets Driven by Laplace Pressure Difference and Capillary Suction

    Fujian Zhang1, Ziyang Wang1, Xiang Gao1, Zhongqiang Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011736

    Abstract Spontaneous droplet transport has broad application prospects in fields such as water collection and microfluidic chips. Despite extensive research in this area, droplet self-transport is still limited by issues such as slow transport velocity, short distance, and poor integrity. Here, a novel cross-hatch textured cone (CHTC) with multistage microchannels and circular grooves is proposed to realize ultrafast directional long-distance self-transport of multi-scale droplets. The CHTC triggers two modes of fluid transport: Droplet transport by Laplace pressure difference and capillary suction pressure-induced fluid transfer in microchannels on cone surfaces. By leveraging the coupling effect of the… More >

  • Open Access

    ARTICLE

    IMTNet: Improved Multi-Task Copy-Move Forgery Detection Network with Feature Decoupling and Multi-Feature Pyramid

    Huan Wang1, Hong Wang1, Zhongyuan Jiang2,*, Qing Qian1, Yong Long1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.053740 - 12 September 2024

    Abstract Copy-Move Forgery Detection (CMFD) is a technique that is designed to identify image tampering and locate suspicious areas. However, the practicality of the CMFD is impeded by the scarcity of datasets, inadequate quality and quantity, and a narrow range of applicable tasks. These limitations significantly restrict the capacity and applicability of CMFD. To overcome the limitations of existing methods, a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach. Firstly, this study formulates the objective task and network relationship as an optimization problem using transfer learning. Furthermore, it thoroughly discusses… More >

  • Open Access

    ARTICLE

    Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images

    Prasanalakshmi Balaji1,*, Omar Alqahtani1, Sangita Babu2, Mousmi Ajay Chaurasia3, Shanmugapriya Prakasam4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 443-458, 2024, DOI:10.32604/cmes.2024.053158 - 20 August 2024

    Abstract Breast cancer is a significant threat to the global population, affecting not only women but also a threat to the entire population. With recent advancements in digital pathology, Eosin and hematoxylin images provide enhanced clarity in examining microscopic features of breast tissues based on their staining properties. Early cancer detection facilitates the quickening of the therapeutic process, thereby increasing survival rates. The analysis made by medical professionals, especially pathologists, is time-consuming and challenging, and there arises a need for automated breast cancer detection systems. The upcoming artificial intelligence platforms, especially deep learning models, play an More >

  • Open Access

    ARTICLE

    Source Camera Identification Algorithm Based on Multi-Scale Feature Fusion

    Jianfeng Lu1,2, Caijin Li1, Xiangye Huang1, Chen Cui3, Mahmoud Emam1,2,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3047-3065, 2024, DOI:10.32604/cmc.2024.053680 - 15 August 2024

    Abstract The widespread availability of digital multimedia data has led to a new challenge in digital forensics. Traditional source camera identification algorithms usually rely on various traces in the capturing process. However, these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms. Convolutional Neural Networks (CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices. However, their performances is not ideal in case of distinguishing between individual devices of the same model, because cameras of the same model typically use the same… More >

  • Open Access

    ARTICLE

    Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement

    Meijing Li*, Runqing Huang, Xianxian Qi

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2283-2299, 2024, DOI:10.32604/cmc.2024.053630 - 15 August 2024

    Abstract Chinese Clinical Named Entity Recognition (CNER) is a crucial step in extracting medical information and is of great significance in promoting medical informatization. However, CNER poses challenges due to the specificity of clinical terminology, the complexity of Chinese text semantics, and the uncertainty of Chinese entity boundaries. To address these issues, we propose an improved CNER model, which is based on multi-feature fusion and multi-scale local context enhancement. The model simultaneously fuses multi-feature representations of pinyin, radical, Part of Speech (POS), word boundary with BERT deep contextual representations to enhance the semantic representation of text… More >

  • Open Access

    ARTICLE

    Colorectal Cancer Segmentation Algorithm Based on Deep Features from Enhanced CT Images

    Shi Qiu1, Hongbing Lu1,*, Jun Shu2, Ting Liang3, Tao Zhou4

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2495-2510, 2024, DOI:10.32604/cmc.2024.052476 - 15 August 2024

    Abstract Colorectal cancer, a malignant lesion of the intestines, significantly affects human health and life, emphasizing the necessity of early detection and treatment. Accurate segmentation of colorectal cancer regions directly impacts subsequent staging, treatment methods, and prognostic outcomes. While colonoscopy is an effective method for detecting colorectal cancer, its data collection approach can cause patient discomfort. To address this, current research utilizes Computed Tomography (CT) imaging; however, conventional CT images only capture transient states, lacking sufficient representational capability to precisely locate colorectal cancer. This study utilizes enhanced CT images, constructing a deep feature network from the… More >

  • Open Access

    ARTICLE

    Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism

    Bing Li1,2,*, Liangyu Wang1, Xia Liu1,2, Hongbin Fan1, Bo Wang3, Shoudi Tong1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1543-1561, 2024, DOI:10.32604/cmc.2024.052009 - 18 July 2024

    Abstract Nuclear magnetic resonance imaging of breasts often presents complex backgrounds. Breast tumors exhibit varying sizes, uneven intensity, and indistinct boundaries. These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation. Thus, we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms. Initially, the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs. Subsequently, we devise a fusion network incorporating multi-scale features and boundary attention mechanisms for breast tumor segmentation. We incorporate multi-scale parallel dilated convolution modules into… More >

  • Open Access

    ARTICLE

    Enhancing Tea Leaf Disease Identification with Lightweight MobileNetV2

    Zhilin Li1,2, Yuxin Li1, Chunyu Yan1, Peng Yan1, Xiutong Li1, Mei Yu1, Tingchi Wen4,5, Benliang Xie1,2,3,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 679-694, 2024, DOI:10.32604/cmc.2024.051526 - 18 July 2024

    Abstract Diseases in tea trees can result in significant losses in both the quality and quantity of tea production. Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations. However, existing methods face challenges such as a high number of parameters and low recognition accuracy, which hinders their application in tea plantation monitoring equipment. This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves, to address these challenges. The proposed method first embeds a Coordinate Attention (CA) module into the original MobileNetV2 network, enabling the model to locate disease More >

  • Open Access

    ARTICLE

    Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence

    Youshen Jiang1, Tongqing Zhou1, Zhilin Wang2, Zhiping Cai1,*, Qiang Ni3

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 585-597, 2024, DOI:10.32604/iasc.2023.030221 - 11 July 2024

    Abstract Due to the increasingly severe challenges brought by various epidemic diseases, people urgently need intelligent outbreak trend prediction. Predicting disease onset is very important to assist decision-making. Most of the existing work fails to make full use of the temporal and spatial characteristics of epidemics, and also relies on multivariate data for prediction. In this paper, we propose a Multi-Scale Location Attention Graph Neural Networks (MSLAGNN) based on a large number of Centers for Disease Control and Prevention (CDC) patient electronic medical records research sequence source data sets. In order to understand the geography and… More >

Displaying 1-10 on page 1 of 121. Per Page