Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    An Electricity-Carbon Synergy-Driven Optimization Method for Low-Carbon Operation of Multi-Energy Parks

    Jiangyang Yuan1, Jiaowen Wu1, Yi Gao1, Yuhao Fu2, Yuntao Bu2, Tianyu Chen2, Hao Yu2,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070715 - 27 January 2026

    Abstract In the pursuit of carbon peaking and neutrality goals, multi-energy parks, as major energy consumers and carbon emitters, urgently require low-carbon operational strategies. This paper proposes an electricity-carbon synergy-driven optimization method for the low-carbon operation of multi-energy parks. The method integrates multi-energy complementary scheduling with a tiered carbon trading mechanism to balance operational security, economic efficiency, and environmental objectives. A mixed-integer linear programming model is developed to characterize the coupling relationships and dynamic behaviors of key equipment, including photovoltaic systems, ground-source heat pumps, thermal storage electric boilers, combined heat and power units, and electrical energy… More >

  • Open Access

    ARTICLE

    Two-Stage Optimal Dispatching of Electricity-Hydrogen-Waste Multi-Energy System with Phase Change Material Thermal Storage

    Linwei Yao1,*, Xiangning Lin1,2, Huashen He1, Jiahui Yang1

    Energy Engineering, Vol.122, No.8, pp. 3285-3308, 2025, DOI:10.32604/ee.2025.066628 - 24 July 2025

    Abstract In order to address the synergistic optimization of energy efficiency improvement in the waste incineration power plant (WIPP) and renewable energy accommodation, an electricity-hydrogen-waste multi-energy system integrated with phase change material (PCM) thermal storage is proposed. First, a thermal energy management framework is constructed, combining PCM thermal storage with the alkaline electrolyzer (AE) waste heat recovery and the heat pump (HP), while establishing a PCM-driven waste drying system to enhance the efficiency of waste incineration power generation. Next, a flue gas treatment method based on purification-separation-storage coordination is adopted, achieving spatiotemporal decoupling between waste incineration… More >

  • Open Access

    ARTICLE

    The Study of Long-Term Trading Revenue Distribution Models in Wind-Photovoltaic-Thermal Complementary Systems Based on the Improved Shapley Value Method

    Dongfeng Yang, Ruirui Zhang, Chuang Liu*, Guoliang Bian

    Energy Engineering, Vol.122, No.7, pp. 2673-2694, 2025, DOI:10.32604/ee.2025.062154 - 27 June 2025

    Abstract Under the current long-term electricity market mechanism, new energy and thermal power face issues such as deviation assessment and compression of generation space. The profitability of market players is limited. Simultaneously, the cooperation model among various energy sources will have a direct impact on the alliance’s revenue and the equity of income distribution within the alliance. Therefore, integrating new energy with thermal power units into an integrated multi-energy complementary system to participate in the long-term electricity market holds significant potential. To simulate and evaluate the benefits and internal distribution methods of a multi-energy complementary system… More >

  • Open Access

    ARTICLE

    Analysis of Renewable Energy Absorption and Economic Feasibility in Multi-Energy Complementary Systems under Spot Market Conditions

    Xiuyun Wang, Zipeng Zhang, Chuang Liu*, Guoliang Bian

    Energy Engineering, Vol.122, No.2, pp. 577-619, 2025, DOI:10.32604/ee.2024.056748 - 31 January 2025

    Abstract As the power system transitions to a new green and low-carbon paradigm, the penetration of renewable energy in China’s power system is gradually increasing. However, the variability and uncertainty of renewable energy output limit its profitability in the electricity market and hinder its market-based integration. This paper first constructs a wind-solar-thermal multi-energy complementary system, analyzes its external game relationships, and develops a bi-level market optimization model. Then, it considers the contribution levels of internal participants to establish a comprehensive internal distribution evaluation index system. Finally, simulation studies using the IEEE 30-bus system demonstrate that the More >

  • Open Access

    ARTICLE

    Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics

    Hang Cui1, Hongbo Ren1,*, Qiong Wu1,2, Hang Lv1, Qifen Li1,2, Weisheng Zhou3

    Energy Engineering, Vol.121, No.3, pp. 581-601, 2024, DOI:10.32604/ee.2023.047470 - 27 February 2024

    Abstract Cascading faults have been identified as the primary cause of multiple power outages in recent years. With the emergence of integrated energy systems (IES), the conventional approach to analyzing power grid cascading faults is no longer appropriate. A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance. In this study, an innovative analysis method for cascading faults in integrated heat and electricity systems (IHES) is proposed. It considers the degradation characteristics of transmission and energy supply components in the system to address the impact of component aging on cascading faults. Firstly, degradation… More >

  • Open Access

    ARTICLE

    Optimization Scheme of Integrated Community Energy Utilization System Based on Improved Sine-Cosine Algorithm

    Xin Zhang*, Jinpeng Jiang, Haoran Zheng, Jihong Zhang

    Energy Engineering, Vol.119, No.3, pp. 1117-1140, 2022, DOI:10.32604/ee.2022.017288 - 31 March 2022

    Abstract China consumes significant amount of natural gas in winter. The integrated community energy utilization system (ICEUS) cannot stabilize the output of electricity and heat if there is a shortage of natural gas. The operation cost of the system still needs improvement. An energy supply structure using garbage power as the core of ICEUS was established in the study. The optimal dispatching model of ICEUS was established using the regulating characteristic of the community load. The sine-cosine algorithm (SCA) based on nonlinear factors and segmented weight was presented to solve the optimal dispatching model of ICEUS. More >

  • Open Access

    ARTICLE

    Dynamic Simulation and Performance Analysis on Multi-Energy Coupled CCHP System

    Xueqin Tian1, Jinfei Sun2, Tong Xu1, Mengran Cui2, Xinlei Wang1, Jianxiang Guo2, De-gejirifu1,*, Na Wang1

    Energy Engineering, Vol.119, No.2, pp. 723-737, 2022, DOI:10.32604/ee.2022.015982 - 24 January 2022

    Abstract Although the Combined Cooing, Heating and Power System (hereinafter referred to as “CCHP”) improves the capacity utilization rate and energy utilization efficiency, single use of CCHP system cannot realize dynamic matching between supply and demand loads due to the unbalance features of the user’s cooling and heating loads. On the basis of user convenience and wide applicability of clean air energy, this paper tries to put forward a coupled CCHP system with combustion gas turbine and ASHP ordered power by heat, analyze trends of such parameters as gas consumption and power consumption of heat pump… More >

  • Open Access

    ARTICLE

    Performance Analysis of Multi-Energy Hybrid System Based on Molten Salt Energy Storage

    Xin Xu*, Lian Zhang*

    Energy Engineering, Vol.118, No.6, pp. 1905-1920, 2021, DOI:10.32604/EE.2021.016738 - 10 September 2021

    Abstract This paper briefly summarizes the current status of typical solar thermal power plant system, including system composition, thermal energy storage medium and performance. The thermo-physical properties of the storage medium are some of the most important factors that affect overall efficiency of the system, because some renewable energy sources such as solar and wind are unpredictable. A thermal storage system is therefore necessary to store energy for continuous usage. Based on the form of storage or the mode of system connection, heat exchangers of a thermal storage system can produce different temperature ranges of heat… More >

  • Open Access

    REVIEW

    A Review of Seasonal Hydrogen Storage Multi-Energy Systems Based on Temporal and Spatial Characteristics

    Yuchen Cao, Yongwen Yang, Xianglong Zhao, Qifen Li*

    Journal of Renewable Materials, Vol.9, No.11, pp. 1823-1842, 2021, DOI:10.32604/jrm.2021.015722 - 04 June 2021

    Abstract The temporal and spatial characteristics of seasonal hydrogen storage will play a very important role in the coupling of multi-energy systems. This essay believes that there are several key issues worth noting in the seasonal hydrogen storage coupled multi-energy system, namely, hydrogen storage methods, coupling models, and benefit evaluation. Through research, this article innovatively divides seasonal hydrogen storage into two types: space transfer hydrogen storage technology and time transfer physical property conversion hydrogen storage technology. Then sort out the two most typical seasonal hydrogen storage multi-energy system application scenarios and their hydrogen storage unit models. More > Graphic Abstract

    A Review of Seasonal Hydrogen Storage Multi-Energy Systems Based on Temporal and Spatial Characteristics

Displaying 1-10 on page 1 of 9. Per Page