Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Thermo-Mechanical, Physico-Chemical, Morphological, and Fire Characteristics of Eco-Friendly Particleboard Manufactured with Phosphorylated Lignin Addition

    Apri Heri Iswanto1,*, Harisyah Manurung1, Asma Sohail2, Lee Seng Hua3,9, Petar Antov4, Deded Sarip Nawawi5, Sarah Latifah5, Dewi Shafa Kayla5,6, Sukma Surya Kusumah6, Muhammad Adly Rahandi Lubis6, Linda Makovická Osvaldová7, Mohd. Hazwan Hussin8, Rangabhashiyam Selvasembian9, Lum Wei Chen10, Puji Rahmawati Nurcahyani6, Nam Hun Kim11, Widya Fatriasari6

    Journal of Renewable Materials, Vol.12, No.7, pp. 1311-1341, 2024, DOI:10.32604/jrm.2024.052172 - 21 August 2024

    Abstract Lignin, lignosulfonate, and synthesized phosphorylated lignosulfonate were introduced as green fillers in citric acid-sucrose adhesives for bonding particleboard fabricated from areca leaf sheath (ALS). The characteristics of particleboards were compared to that of ultralow emitting formaldehyde (ULEF-UF). The fillers derived from Eucalyptus spp. kraft-lignin were added for flame retardancy enhancement. 10% of each lignin and modified lignin was added into the ULEF-UF and citric acid-sucrose bonded particleboards. Analyses applied to particleboards included thermal characteristics, X-ray diffraction analysis (XRD), morphological properties, Fourier transform infrared spectroscopy (FTIR), as well as physical, mechanical, and fire resistance characteristics of the… More > Graphic Abstract

    Thermo-Mechanical, Physico-Chemical, Morphological, and Fire Characteristics of Eco-Friendly Particleboard Manufactured with Phosphorylated Lignin Addition

  • Open Access

    ARTICLE

    Chemically Modified Lignin: Correlation between Structure and Biodegradability

    Meifeng Wang1,2, Wubliker Dessie2, Hui Li1,*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2119-2128, 2021, DOI:10.32604/jrm.2021.016811 - 22 June 2021

    Abstract Lignin is the most abundant heteropolymer based on aromatic subunits in nature. Large quantities of lignin are annually produced from pulping processes and biorefinery industries. Its unclearly defined structure and difficult biodegradation mainly limit its utilization. This work focused on the effect of hydroxylation of lignin on its microbial degradation. Butyloxy carbonyl-modified lignin, and hydroxylated-lignin were synthesized with di-tert-butyl dicarbonate and hydrogen peroxide, respectively, using lignin as raw material. The degradation of the modifiedlignins both by P. chrysosporium and B. subtilis were analyzed using UV-vis spectroscopy. Results revealed that the lignin degradation velocity raises with the increase More > Graphic Abstract

    Chemically Modified Lignin: Correlation between Structure and Biodegradability

Displaying 1-10 on page 1 of 2. Per Page