Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Lightweight YOLOM-Net for Automatic Identification and Real-Time Detection of Fatigue Driving

    Shanmeng Zhao1,2, Yaxue Peng1,*, Yaqing Wang3, Gang Li3,*, Mohammed Al-Mahbashi1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4995-5017, 2025, DOI:10.32604/cmc.2025.059972 - 06 March 2025

    Abstract In recent years, the country has spent significant workforce and material resources to prevent traffic accidents, particularly those caused by fatigued driving. The current studies mainly concentrate on driver physiological signals, driving behavior, and vehicle information. However, most of the approaches are computationally intensive and inconvenient for real-time detection. Therefore, this paper designs a network that combines precision, speed and lightweight and proposes an algorithm for facial fatigue detection based on multi-feature fusion. Specifically, the face detection model takes YOLOv8 (You Only Look Once version 8) as the basic framework, and replaces its backbone network… More >

Displaying 1-10 on page 1 of 1. Per Page