Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    MARCS: A Mobile Crowdsensing Framework Based on Data Shapley Value Enabled Multi-Agent Deep Reinforcement Learning

    Yiqin Wang1, Yufeng Wang1,*, Jianhua Ma2, Qun Jin3

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4431-4449, 2025, DOI:10.32604/cmc.2025.059880 - 06 March 2025

    Abstract Opportunistic mobile crowdsensing (MCS) non-intrusively exploits human mobility trajectories, and the participants’ smart devices as sensors have become promising paradigms for various urban data acquisition tasks. However, in practice, opportunistic MCS has several challenges from both the perspectives of MCS participants and the data platform. On the one hand, participants face uncertainties in conducting MCS tasks, including their mobility and implicit interactions among participants, and participants’ economic returns given by the MCS data platform are determined by not only their own actions but also other participants’ strategic actions. On the other hand, the platform can… More >

  • Open Access

    ARTICLE

    Enhancing Task Assignment in Crowdsensing Systems Based on Sensing Intervals and Location

    Rasha Sleem1, Nagham Mekky1, Shaker El-Sappagh2,3, Louai Alarabi4,*, Noha A. Hikal1, Mohammed Elmogy1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5619-5638, 2022, DOI:10.32604/cmc.2022.023716 - 14 January 2022

    Abstract The popularity of mobile devices with sensors is captivating the attention of researchers to modern techniques, such as the internet of things (IoT) and mobile crowdsensing (MCS). The core concept behind MCS is to use the power of mobile sensors to accomplish a difficult task collaboratively, with each mobile user completing much simpler micro-tasks. This paper discusses the task assignment problem in mobile crowdsensing, which is dependent on sensing time and path planning with the constraints of participant travel distance budgets and sensing time intervals. The goal is to minimize aggregate sensing time for mobile… More >

  • Open Access

    ARTICLE

    A Differentially Private Data Aggregation Method Based on Worker Partition and Location Obfuscation for Mobile Crowdsensing

    Shuyu Li1, Guozheng Zhang1, *

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 223-241, 2020, DOI:10.32604/cmc.2020.07499 - 30 March 2020

    Abstract With the popularity of sensor-rich mobile devices, mobile crowdsensing (MCS) has emerged as an effective method for data collection and processing. However, MCS platform usually need workers’ precise locations for optimal task execution and collect sensing data from workers, which raises severe concerns of privacy leakage. Trying to preserve workers’ location and sensing data from the untrusted MCS platform, a differentially private data aggregation method based on worker partition and location obfuscation (DP-DAWL method) is proposed in the paper. DP-DAWL method firstly use an improved K-means algorithm to divide workers into groups and assign different… More >

Displaying 1-10 on page 1 of 3. Per Page