Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Energy Efficiency Maximization in Mobile Edge Computing Networks via IRS assisted UAV Communications

    Ying Zhang1, Weiming Niu2, Supu Xiu1,3, Guangchen Mu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1865-1884, 2024, DOI:10.32604/cmes.2023.030114 - 17 November 2023

    Abstract In this paper, we investigate the energy efficiency maximization for mobile edge computing (MEC) in intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) communications. In particular, UAV can collect the computing tasks of the terrestrial users and transmit the results back to them after computing. We jointly optimize the users’ transmitted beamforming and uploading ratios, the phase shift matrix of IRS, and the UAV trajectory to improve the energy efficiency. The formulated optimization problem is highly non-convex and difficult to be solved directly. Therefore, we decompose the original problem into three sub-problems. We first More >

  • Open Access

    ARTICLE

    IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks

    Ying Zhang1,*, Weiming Niu2, Leibing Yan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 885-902, 2024, DOI:10.32604/cmes.2023.029234 - 22 September 2023

    Abstract In this paper, we consider mobile edge computing (MEC) networks against proactive eavesdropping. To maximize the transmission rate, IRS assisted UAV communications are applied. We take the joint design of the trajectory of UAV, the transmitting beamforming of users, and the phase shift matrix of IRS. The original problem is strong non-convex and difficult to solve. We first propose two basic modes of the proactive eavesdropper, and obtain the closed-form solution for the boundary conditions of the two modes. Then we transform the original problem into an equivalent one and propose an alternating optimization (AO) More >

  • Open Access

    ARTICLE

    Edge Cloud Selection in Mobile Edge Computing (MEC)-Aided Applications for Industrial Internet of Things (IIoT) Services

    Dae-Young Kim1, SoYeon Lee2, MinSeung Kim2, Seokhoon Kim1,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2049-2060, 2023, DOI:10.32604/csse.2023.040473 - 28 July 2023

    Abstract In many IIoT architectures, various devices connect to the edge cloud via gateway systems. For data processing, numerous data are delivered to the edge cloud. Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency. There are two types of costs for this kind of IoT network: a communication cost and a computing cost. For service efficiency, the communication cost of data transmission should be minimized, and the computing cost in the edge cloud should be also minimized. Therefore, in this paper, the communication cost for data transmission is defined as… More >

  • Open Access

    ARTICLE

    Intelligent Traffic Scheduling for Mobile Edge Computing in IoT via Deep Learning

    Shaoxuan Yun, Ying Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1815-1835, 2023, DOI:10.32604/cmes.2022.022797 - 20 September 2022

    Abstract Nowadays, with the widespread application of the Internet of Things (IoT), mobile devices are renovating our lives. The data generated by mobile devices has reached a massive level. The traditional centralized processing is not suitable for processing the data due to limited computing power and transmission load. Mobile Edge Computing (MEC) has been proposed to solve these problems. Because of limited computation ability and battery capacity, tasks can be executed in the MEC server. However, how to schedule those tasks becomes a challenge, and is the main topic of this piece. In this paper, we More >

  • Open Access

    ARTICLE

    Efficient Computation Offloading of IoT-Based Workflows Using Discrete Teaching Learning-Based Optimization

    Mohamed K. Hussein1,*, Mohamed H. Mousa1,2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3685-3703, 2022, DOI:10.32604/cmc.2022.026370 - 16 June 2022

    Abstract As the Internet of Things (IoT) and mobile devices have rapidly proliferated, their computationally intensive applications have developed into complex, concurrent IoT-based workflows involving multiple interdependent tasks. By exploiting its low latency and high bandwidth, mobile edge computing (MEC) has emerged to achieve the high-performance computation offloading of these applications to satisfy the quality-of-service requirements of workflows and devices. In this study, we propose an offloading strategy for IoT-based workflows in a high-performance MEC environment. The proposed task-based offloading strategy consists of an optimization problem that includes task dependency, communication costs, workflow constraints, device energy More >

Displaying 1-10 on page 1 of 5. Per Page