Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access


    Influence of the Inclination Angle on Mixed Convection and Heat Transfer in a “T” Shaped Double Enclosure

    M’Barka Mourabit1,*, Meryam Meknassi2, Soukaina Fekkar1, Soumia Mordane1, Hicham Rouijaa3, El Alami Semma4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.7, pp. 1753-1774, 2023, DOI:10.32604/fdmp.2023.025739


    The effect of the tilt angle on mixed convection and related heat transfer in a “T” shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated. The considered obstacles are constantly kept at a relatively high (fixed) temperature, while the cavity’s upper wall is cooled. The finite volume approach is used to solve the mass, momentum, and energy equations with the SIMPLEC algorithm being exploited to deal with the pressure-velocity coupling. Emphasis is put on the influence of the tilt angle on the solution symmetry, flow structure, and heat exchange through the walls. The following parameters… More > Graphic Abstract

    Influence of the Inclination Angle on Mixed Convection and Heat Transfer in a “T” Shaped Double Enclosure

  • Open Access


    Buoyancy Effects in the Peristaltic Flow of a Prandtl-Eyring Nanofluid with Slip Boundaries

    Hina Zahir*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1507-1519, 2023, DOI:10.32604/fdmp.2023.022520

    Abstract The interaction of nanoparticles with a peristaltic flow is analyzed considering a Prandtl-Eyring fluid under various conditions, such as the presence of a heat source/sink and slip effects in channels with a curvature. This problem has extensive background links with various fields in medical science such as chemotherapy and more in general nanotechnology. A similarity transformation is used to turn the original balance equations into a set of ordinary differential equations, which are then integrated numerically. The investigation reveals that nanofluids have valuable thermal capabilitises. More >

  • Open Access


    Numerical Analysis of the Mixed Flow of a Non-Newtonian Fluid over a Stretching Sheet with Thermal Radiation

    Nourhan I. Ghoneim1,*, Ahmed M. Megahed2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 407-419, 2023, DOI:10.32604/fdmp.2022.020508

    Abstract A mathematical model is elaborated for the laminar flow of an Eyring-Powell fluid over a stretching sheet. The considered non-Newtonian fluid has Prandtl number larger than one. The effects of variable fluid properties and heat generation/absorption are also discussed. The balance equations for fluid flow are reduced to a set of ordinary differential equations through a similarity transformation and solved numerically using a Chebyshev spectral scheme. The effect of various parameters on the rate of heat transfer in the thermal boundary regime is investigated, i.e., thermal conductivity, the heat generation/absorption ratio and the mixed convection parameter. Good agreement appears to… More >

  • Open Access


    Mixed Convection in a Two-Sided Lid-Driven Square Cavity Filled with Different Types of Nanoparticles: A Comparative Study Assuming Nanoparticles with Different Shapes

    Mostafa Zaydan1, Mehdi Riahi1,2,*, Fateh Mebarek-Oudina3, Rachid Sehaqui1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 789-819, 2021, DOI:10.32604/fdmp.2021.015422

    Abstract Steady, laminar mixed convection inside a lid-driven square cavity filled with nanofluid is investigated numerically. We consider the case where the right and left walls are moving downwards and upwards respectively and maintained at different temperatures while the other two horizontal ones are kept adiabatic and impermeable. The set of nonlinear coupled governing mass, momentum, and energy equations are solved using an extensively validated and a highly accurate finite difference method of fourth-order. Comparisons with previously conducted investigations on special configurations are performed and show an excellent agreement. Meanwhile, attention is focused on the heat transfer enhancement when different nano-particles:… More >

  • Open Access


    MHD and Viscous Dissipation Effects in Marangoni Mixed Flow of a Nanofluid over an Inclined Plate in the Presence of Ohmic Heating

    D. R. V. S. R. K. Sastry1, Peri K. Kameswaran2, Mohammad Hatami3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.2, pp. 285-300, 2021, DOI:10.32604/fdmp.2021.014429

    Abstract The problem of Marangoni mixed convection in the presence of an inclined magnetic field with uniform strength in a nanofluid (formed by the dispersion of two metallic nanoparticles, i.e., Copper (Cu), and alumina (Al2O3) in water) is addressed numerically. The effects of viscous dissipation and Ohmic heating are also considered. The original set of governing partial differential equations is reduced to a set of non-linear coupled ordinary differential equations employing the similarity transformation technique. The simplified equations are numerically solved through MATLAB ‘bvp4c’ algorithm. The results are presented in terms of graphs for several parameters. It is found that enhancing… More >

  • Open Access


    Numerical Simulations of Hydromagnetic Mixed Convection Flow of Nanofluids inside a Triangular Cavity on the Basis of a Two-Component Nonhomogeneous Mathematical Model

    Khadija A. Al-Hassani1, M. S. Alam2, M. M. Rahman1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 1-20, 2021, DOI:10.32604/fdmp.2021.013497

    Abstract Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties. Numerical simulations are presented about the unsteady behavior of mixed convection of Fe3O4-water, Fe3O4- kerosene, Fe3O4-ethylene glycol, and Fe3O4-engine oil nanofluids inside a lid-driven triangular cavity. In particular, a two-component non-homogeneous nanofluid model is used. The bottom wall of the enclosure is insulated, whereas the inclined wall is kept a constant (cold) temperature and various temperature laws are assumed for the vertical wall, namely: θ = 1(Case 1), θ = Y(1 – Y)(Case 2), and θ = sin(2πY)(Case 3). A tilted magnetic field of uniform… More >

  • Open Access


    Darcy-Forchheimer Hybrid Nano Fluid Flow with Mixed Convection Past an Inclined Cylinder

    M. Bilal1, Imran Khan1, Taza Gul1,*, Asifa Tassaddiq2, Wajdi Alghamdi3, Safyan Mukhtar4, Poom Kumam5

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 2025-2039, 2021, DOI:10.32604/cmc.2020.012677

    Abstract This article aims to investigate the Darcy Forchhemier mixed convection flow of the hybrid nanofluid through an inclined extending cylinder. Two different nanoparticles such as carbon nanotubes (CNTs) and iron oxide Fe3O4 have been added to the base fluid in order to prepare a hybrid nanofluid. Nonlinear partial differential equations for momentum, energy and convective diffusion have been changed into dimensionless ordinary differential equations after using Von Karman approach. Homotopy analysis method (HAM), a powerful analytical approach has been used to find the solution to the given problem. The effects of the physical constraints on velocity, concentration and temperature profile… More >

  • Open Access


    Mixed Convection of Non-Newtonian Erying Powell Fluid with TemperatureDependent Viscosity over a Vertically Stretched Surface

    Ahlam Aljabali1, Abdul Rahman Mohd Kasim1,*, Nur Syamilah Arifin2, Sharena Mohamad Isa3

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 421-435, 2021, DOI:10.32604/cmc.2020.012322

    Abstract The viscosity of a substance or material is intensely influenced by the temperature, especially in the field of lubricant engineering where the changeable temperature is well executed. In this paper, the problem of temperature-dependent viscosity on mixed convection flow of Eyring Powell fluid was studied together with Newtonian heating thermal boundary condition. The flow was assumed to move over a vertical stretching sheet. The model of the problem, which is in partial differential equations, was first transformed to ordinary differential equations using appropriate transformations. This approach was considered to reduce the complexity of the equations. Then, the transformed equations were… More >

  • Open Access


    Computational Analysis of the Effect of Nano Particle Material Motion on Mixed Convection Flow in the Presence of Heat Generation and Absorption

    Muhammad Ashraf1, Amir Abbas1, Saqib Zia2, Yu-Ming Chu3, 4, Ilyas Khan5, *, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1809-1823, 2020, DOI:10.32604/cmc.2020.011404

    Abstract The present study is concerned with the physical behavior of the combined effect of nano particle material motion and heat generation/absorption due to the effect of different parameters involved in prescribed flow model. The formulation of the flow model is based on basic universal equations of conservation of momentum, energy and mass. The prescribed flow model is converted to non-dimensional form by using suitable scaling. The obtained transformed equations are solved numerically by using finite difference scheme. For the analysis of above said behavior the computed numerical data for fluid velocity, temperature profile, and mass concentration for several constraints that… More >

  • Open Access


    Computational Analysis of the Oscillatory Mixed Convection Flow along a Horizontal Circular Cylinder in Thermally Stratified Medium

    Zia Ullah1, Muhammad Ashraf1, Saqib Zia2, Yuming Chu3, 4, Ilyas Khan5, *, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 109-123, 2020, DOI:10.32604/cmc.2020.011468

    Abstract The present work emphasizes the significance of oscillatory mixed convection stratified fluid and heat transfer characteristics at different stations of non-conducting horizontally circular cylinder in the presence of thermally stratified medium. To remove the difficulties in illustrating the coupled PDE’s, the finite-difference scheme with efficient primitive-variable formulation is proposed to transform dimensionless equations. The numerical simulations of coupled non-dimensional equations are computed in terms velocity of fluid, temperature and magnetic field which are computed to examine the fluctuating components of skin friction, heat transfer and current density for various emerging parameters. The governing parameters namely, thermally stratification parameter More >

Displaying 1-10 on page 1 of 30. Per Page  

Share Link

WeChat scan