Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773 - 11 March 2024

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic More >

  • Open Access

    ARTICLE

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

    Kamran1, Siraj Ahmad1, Kamal Shah2,3,*, Thabet Abdeljawad2,4,*, Bahaaeldin Abdalla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2743-2765, 2023, DOI:10.32604/cmes.2023.023705 - 23 November 2022

    Abstract Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects. Using the Laplace transform for solving differential equations, however, sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analytical means. Thus, we need numerical inversion methods to convert the obtained solution from Laplace domain to a real domain. In this paper, we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with order . Our proposed… More > Graphic Abstract

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

  • Open Access

    ARTICLE

    Analysis and Dynamics of Illicit Drug Use Described by Fractional Derivative with Mittag-Leffler Kernel

    Berat Karaagac1, 2, Kolade Matthew Owolabi1, 3, *, Kottakkaran Sooppy Nisar4

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 1905-1924, 2020, DOI:10.32604/cmc.2020.011623 - 16 September 2020

    Abstract Illicit drug use is a significant problem that causes great material and moral losses and threatens the future of the society. For this reason, illicit drug use and related crimes are the most significant criminal cases examined by scientists. This paper aims at modeling the illegal drug use using the Atangana-Baleanu fractional derivative with Mittag-Leffler kernel. Also, in this work, the existence and uniqueness of solutions of the fractional-order Illicit drug use model are discussed via Picard-Lindelöf theorem which provides successive approximations using a convergent sequence. Then the stability analysis for both disease-free and endemic More >

Displaying 1-10 on page 1 of 3. Per Page