Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Novel Investigation of Stochastic Fractional Differential Equations Measles Model via the White Noise and Global Derivative Operator Depending on Mittag-Leffler Kernel

    Saima Rashid1,2,*, Fahd Jarad3,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2289-2327, 2024, DOI:10.32604/cmes.2023.028773 - 11 March 2024

    Abstract Because of the features involved with their varied kernels, differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues. In this paper, we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels. In this approach, the overall population was separated into five cohorts. Furthermore, the descriptive behavior of the system was investigated, including prerequisites for the positivity of solutions, invariant domain of the solution, presence and stability of equilibrium points, and sensitivity analysis. We included a stochastic More >

  • Open Access

    ARTICLE

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

    Kamran1, Siraj Ahmad1, Kamal Shah2,3,*, Thabet Abdeljawad2,4,*, Bahaaeldin Abdalla2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2743-2765, 2023, DOI:10.32604/cmes.2023.023705 - 23 November 2022

    Abstract Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects. Using the Laplace transform for solving differential equations, however, sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analytical means. Thus, we need numerical inversion methods to convert the obtained solution from Laplace domain to a real domain. In this paper, we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with order . Our proposed… More > Graphic Abstract

    On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods

  • Open Access

    ARTICLE

    A Mathematical Model for COVID-19 Image Enhancement based on Mittag-Leffler-Chebyshev Shift

    Ibtisam Aldawish1, Hamid A. Jalab2,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1307-1316, 2022, DOI:10.32604/cmc.2022.029445 - 18 May 2022

    Abstract The lungs CT scan is used to visualize the spread of the disease across the lungs to obtain better knowledge of the state of the COVID-19 infection. Accurately diagnosing of COVID-19 disease is a complex challenge that medical system face during the pandemic time. To address this problem, this paper proposes a COVID-19 image enhancement based on Mittag-Leffler-Chebyshev polynomial as pre-processing step for COVID-19 detection and segmentation. The proposed approach comprises the Mittag-Leffler sum convoluted with Chebyshev polynomial. The idea for using the proposed image enhancement model is that it improves images with low gray-level… More >

  • Open Access

    ARTICLE

    Lacunary Generating Functions of Hybrid Type Polynomials in Viewpoint of Symbolic Approach

    Nusrat Raza1, Umme Zainab2 and Serkan Araci3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 903-921, 2022, DOI:10.32604/cmes.2022.017669 - 13 December 2021

    Abstract In this paper, we introduce mon-symbolic method to obtain the generating functions of the hybrid class of Hermite-associated Laguerre and its associated polynomials. We obtain the series definitions of these hybrid special polynomials. Also, we derive the double lacunary generating functions of the Hermite-Laguerre polynomials and the Hermite-Laguerre-Wright polynomials. Further, we find multiplicative and derivative operators for the Hermite-Laguerre-Wright polynomials which helps to find the symbolic differential equation of the Hermite-Laguerre-Wright polynomials. Some concluding remarks are also given. More >

  • Open Access

    ARTICLE

    Analysis and Dynamics of Illicit Drug Use Described by Fractional Derivative with Mittag-Leffler Kernel

    Berat Karaagac1, 2, Kolade Matthew Owolabi1, 3, *, Kottakkaran Sooppy Nisar4

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 1905-1924, 2020, DOI:10.32604/cmc.2020.011623 - 16 September 2020

    Abstract Illicit drug use is a significant problem that causes great material and moral losses and threatens the future of the society. For this reason, illicit drug use and related crimes are the most significant criminal cases examined by scientists. This paper aims at modeling the illegal drug use using the Atangana-Baleanu fractional derivative with Mittag-Leffler kernel. Also, in this work, the existence and uniqueness of solutions of the fractional-order Illicit drug use model are discussed via Picard-Lindelöf theorem which provides successive approximations using a convergent sequence. Then the stability analysis for both disease-free and endemic More >

  • Open Access

    ABSTRACT

    Characterizing the Ultra-Slow Creep in Concrete Based on the Non-Local Structural Derivative Maxwell Model

    Xianglong Su*, Wenxiang Xu, Wen Chen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 77-77, 2019, DOI:10.32604/icces.2019.05090

    Abstract Creep of concrete can last for decades, which displays the ultra-slow rheological phenomena. As an empirical formula, the logarithmic law is usually used to describe the ultra-slow creep. However, the logarithmic law does not always work well especially for the long-term creep. And its corresponding relaxation response cannot be obtained analytically. It is known that the Mittag-Leffler and the inverse Mittag-Leffler functions are generalized from the exponential and the logarithmic functions, respectively. And the inverse Mittag-Leffler function is much slower and generalized than the logarithmic function. In this paper, we use the non-local structural derivative… More >

  • Open Access

    ARTICLE

    Approximate Analytical Solution of Time-fractional order Cauchy-Reaction Diffusion equation

    H. S. Shukla1, Mohammad Tamsir1, Vineet K. Srivastava2, Jai Kumar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.1, pp. 1-17, 2014, DOI:10.3970/cmes.2014.103.001

    Abstract The objective of this article is to carry out an approximate analytical solution of the time fractional order Cauchy-reaction diffusion equation by using a semi analytical method referred as the fractional-order reduced differential transform method (FRDTM). The fractional derivative is illustrated in the Caputo sense. The FRDTM is very efficient and effective powerful mathematical tool for solving wide range of real world physical problems by providing an exact or a closed approximate solution of any differential equation arising in engineering and allied sciences. Four test numerical examples are provided to validate and illustrate the efficiency More >

Displaying 1-10 on page 1 of 7. Per Page