Yanbin Zhao1, *, Bin Du2, Shuang Li2
CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 235-257, 2020, DOI:10.32604/cmes.2020.08070
- 01 January 2020
Abstract Satellite observation schedule is investigated in this paper. A mission planning algorithm of task clustering is proposed to improve the observation efficiency of agile satellite. The newly developed method can make the satellite observe more targets and therefore save observation resources. First, for the densely distributed target points, a pre-processing scheme based on task clustering is proposed. The target points are clustered according to the distance condition. Second, the local observation path is generated by Tabu algorithm in the inner layer of cluster regions. Third, considering the scatter and cluster sets, the global observation path More >