Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Prediction Model for Gas Outburst Intensity of Coal Mining Face Based on Improved PSO and LSSVM

    Haibo Liu1,*, Yujie Dong2, Fuzhong Wang1

    Energy Engineering, Vol.118, No.3, pp. 679-689, 2021, DOI:10.32604/EE.2021.014630 - 22 March 2021

    Abstract For the problems of nonlinearity, uncertainty and low prediction accuracy in the gas outburst prediction of coal mining face, the least squares support vector machine (LSSVM) is proposed to establish the prediction model. Firstly, considering the inertia coefficients as global parameters lacks the ability to improve the solution for the traditional particle swarm optimization (PSO), an improved PSO (IPSO) algorithm is introduced to adjust different inertia weights in updating the particle swarm and solve the fitness to stagnate. Secondly, the penalty factor and kernel function parameter of LSSVM are searched automatically, and the regression accuracy More >

Displaying 1-10 on page 1 of 1. Per Page