Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Zero-Index Metamaterial Superstrates UWB Antenna for Microwave Imaging Detection

    Mohd Aminudin Jamlos1,*, Nur Amirah Othman1, Wan Azani Mustafa2, Mohd Faizal Jamlos3, Mohamad Nur Khairul Hafizi Rohani2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 277-292, 2023, DOI:10.32604/cmc.2023.032840 - 06 February 2023

    Abstract Metamaterials (MTM) can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice. Note that the antenna is the element for realizing a microwave imaging (MWI) system since it is where signal transmission and absorption occur. Ultra-Wideband (UWB) antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna. The lack of conventional head imaging techniques, for instance, Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT)-scan, has been demonstrated in the paper focusing on the point of… More >

  • Open Access

    ARTICLE

    Directional Wideband Wearable Antenna with Circular Parasitic Element for Microwave Imaging Applications

    N. A. Koma'rudin1, Z. Zakaria1,*, A. A. Althuwayb2, H. Lago3, H. Alsariera1, H. Nornikman1, A. J. A. Al-Gburi1, P. J. Soh4,5

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 983-998, 2022, DOI:10.32604/cmc.2022.024782 - 24 February 2022

    Abstract This work proposes a wideband and unidirectional antenna consisting of dual layer of coplanar waveguide based on the circular parasitic element technique. The design procedure is implemented in three stages: Design A, which operates at 3.94 GHz with a bandwidth of 3.83 GHz and a fractional bandwidth (FBW) of 97.2%; Design B, which operates at 3.98 GHz with a bandwidth of 0.66 GHz (FBW of 56.53%); and Design C as the final antenna. The final Design C is designed to resonate at several frequencies between 2.89 and 7.0 GHz for microwave imaging applications with a More >

  • Open Access

    ARTICLE

    Multifrequency Microwave Imaging for Brain Stroke Detection

    Lulu Wang1,*

    Molecular & Cellular Biomechanics, Vol.17, No.1, pp. 33-40, 2020, DOI:10.32604/mcb.2019.07165

    Abstract CT and MRI are often used in the diagnosis and monitoring of stroke. However, they are expensive, time-consuming, produce ionizing radiation (CT), and not suitable for continuous monitoring stroke. Microwave imaging (MI) has been extensively investigated for identifying several types of human organs, including breast, brain, lung, liver, and gastric. The authors recently developed a holographic microwave imaging (HMI) algorithm for biological object detection. However, this method has difficulty in providing accurate information on embedded small inclusions. This paper describes the feasibility of the use of a multifrequency HMI algorithm for brain stroke detection. A More >

  • Open Access

    ABSTRACT

    Multifrequency Microwave Imaging for Brain Stroke Detection

    Lulu Wang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 125-125, 2019, DOI:10.32604/mcb.2019.07101

    Abstract Early diagnosis of stroke with timely treatment could reduce adult permanent disability significantly [1]. Conventional medical imaging tools such as X-ray, ultrasound, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have been widely used for diagnosis of brain disease. However, each of these methods has some limitations. X-ray imaging produces harmful radiation to the human body and challenging to identify early-stage abnormal tissue due to the relatively small dielectric proprieties contrast between the healthy tissue and abnormal tissue at X-ray frequencies [2]. PET provides useful information about soft tissues, but it… More >

Displaying 1-10 on page 1 of 4. Per Page