A. Papacharalampopoulos2, G. F. Karlis2, A. Charalambopoulos3, D. Polyzos4
CMES-Computer Modeling in Engineering & Sciences, Vol.58, No.1, pp. 45-74, 2010, DOI:10.3970/cmes.2010.058.045
Abstract A Boundary Element Method (BEM) for solving two (2D) and three dimensional (3D) dynamic problems in materials with microstructural effects is presented. The analysis is performed in the frequency domain and in the context of Mindlin's Form II gradient elastic theory. The fundamental solution of the differential equation of motion is explicitly derived for both 2D and 3D problems. The integral representation of the problem, consisting of two boundary integral equations, one for displacements and the other for its normal derivative is exploited for the proposed BEM formulation. The global boundary of the analyzed domain More >