Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    ScRNA-seq and Experimental Analyses Unveil Lrg1 Regulating the Oxidative Phosphorylation Pathway to Affect Neutrophil Accumulation after Cerebral Ischemia-Reperfusion

    Luyao Jiang1,#, Longsheng Fu2,#, Shaofeng Xiong2,3, Guosheng Cao4, Yanqin Mei2,3, Yaoqi Wu2, Jin Chen1,*, Yanni LV2,5,6,*

    BIOCELL, Vol.49, No.9, pp. 1749-1769, 2025, DOI:10.32604/biocell.2025.068507 - 25 September 2025

    Abstract Background: After ischemic stroke, neutrophils hyperactivate, increasing in number and worsening inflammation, causing neural damage. Prior scRNA-seq showed Lrg1 modulates cells subsentence to cerebral ischemia-reperfusion injury, but its mechanism in regulating neutrophil accumulation/differentiation post-injury is unclear. Methods: Lrg1 knockout impact on neutrophil accumulation was assessed via immunofluorescence and western blot. Three-dimensional reconstruction of immunofluorescent staining analyzed cell-cell interactions among neutrophils and microglia. scRNA-seq of WT and Lrg1-/- mice from GSE245386 and GSE279462 was conducted. Each group conducted oxidative phosphorylation scoring via Gene Set Enrichment Analysis (GSEA), while Metascape was employed to perform GO and KEGG enrichment… More > Graphic Abstract

    ScRNA-seq and Experimental Analyses Unveil Lrg1 Regulating the Oxidative Phosphorylation Pathway to Affect Neutrophil Accumulation after Cerebral Ischemia-Reperfusion

  • Open Access

    ARTICLE

    Dexamethasone Effects on Cell Composition and Myelin Content in the Mouse Brain

    Stanislav Aladev1,*, Dmitry Sokolov1, Maxim Politko1, Galina Kazanskaya1, Svetlana Aidagulova1,2, Elvira Grigorieva1,3

    BIOCELL, Vol.49, No.6, pp. 1057-1069, 2025, DOI:10.32604/biocell.2025.064100 - 24 June 2025

    Abstract Background: Glucocorticoids are used as anti-inflammatory drugs for the treatment of various diseases, however, their side effects on normal brain tissue remain underinvestigated. Objectives: The study aimed to investigate dexamethasone (DXM) effects on cell composition and myelin content in the mouse brain tissue. Methods: C57Bl/6 male mice (n = 60) received single and ten multiple intraperitoneal DXM injections (2.5 mg/kg), and the studied parameters were analysed at 1, 3, 7, 10 days after a single DXM injection and 15, 30, 60, and 90 days after the multiple injections. Oligodendrocytes, microglia, and astrocytes were assayed by immunohistochemistry… More >

  • Open Access

    ARTICLE

    Microglia and brain macrophages are differentially associated with tumor necrosis in glioblastoma: A link to tumor progression

    CHRISTINA LOH1, YUQI ZHENG1, ISLAM ALZOUBI2, KIMBERLEY L. ALEXANDER3,4, MAGGIE LEE4, WEI-DONG CAI2, YANG SONG5, KERRIE MCDONALD6, ANNA K. NOWAK7, RICHARD B. BANATI8,9, MANUEL B. GRAEBER1,4,10,*

    Oncology Research, Vol.33, No.4, pp. 937-950, 2025, DOI:10.32604/or.2024.056436 - 19 March 2025

    Abstract Background: Microglia and brain macrophages contribute significantly to the tumor microenvironment in highly malignant glioblastoma where they are considered important drivers of tumor progression. A better understanding of the role of the brain macrophages present in glioblastoma appears crucial for improving therapeutic outcomes, especially in the context of novel immunotherapeutic approaches. Methods: We investigated the regulation of two well-established markers for microglia and brain macrophages, IBA1 and CD163, in relation to glioblastoma tumor necrosis using immunohistochemistry and modality fusion heatmaps of whole slide images obtained from adjacent tissue sections. Results: IBA1 and CD163 showed remarkable differences… More >

  • Open Access

    REVIEW

    Exploring the vital role of microglial membrane receptors in Alzheimer’s disease pathogenesis: a comprehensive review

    JUN-FENG ZHAO1,†, YI-RAN JIANG2,†, TIAN-LIN GUO1, YONG-QING JIAO1,*, XUN WANG1,*

    BIOCELL, Vol.48, No.7, pp. 1011-1022, 2024, DOI:10.32604/biocell.2024.050120 - 03 July 2024

    Abstract Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons. They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons. As the global population ages rapidly, increased people are being diagnosed with neurodegenerative diseases. It has been established that the onset of Alzheimer’s disease (AD) is closely linked with increasing age and its major pathological features include amyloid-beta plaques (Aβ), Tau hyperphosphorylation, Neurofibrillary tangles (NFTs), neuronal death as well as synaptic loss. The involvement of microglia is crucial… More >

  • Open Access

    ARTICLE

    Quercetin regulates depression-like behavior in CUMS rat models via TLR4/NF-κB signaling

    YUANYUAN LI1, BITAO ZHANG1, ZILONG CUI1, PEIJIAN FAN1, SHAOXIAN WANG1,2,*

    BIOCELL, Vol.48, No.5, pp. 731-744, 2024, DOI:10.32604/biocell.2024.048820 - 06 May 2024

    Abstract Background: Depression is becoming increasingly prevalent around the world, imposing a substantial burden on individuals, families, as well as society. Quercetin is known to be highly effective in treating depression. However, additional research is needed to dissect the mechanisms of its anti-depressive effects. Methods: For this study, Sprague-Dawley (SD) rats were randomized into the control, model, quercetin, or fluoxetine group. The latter three groups were exposed to chronic unpredictable mild stress (CUMS) for 42 d. The first two groups received saline solution daily via oral gavage. Meanwhile, the quercetin group was orally administered a quercetin suspension… More >

  • Open Access

    ARTICLE

    Thymic stromal lymphopoietin suppresses markers of neuroinflammation and the JAK2/STAT5 pathway in activated microglia

    Qiao Zhou1,2,3,, Nanxue Cui1,2,3,, Shihai Zhang1,2,3,#, Miaomiao Zhou4,#, Younian Xu1,2,3,#

    European Cytokine Network, Vol.34, No.3, pp. 21-27, 2023, DOI:10.1684/ecn.2023.0487

    Abstract Thymic stromal lymphopoietin (TSLP) is highly expressed in the central nervous system in response to inflammation, but its exact function remains unclear. In this study, we used a model of LPS-stimulated microglia to investigate the direct impact of TSLP on microglial activation and the underlying mechanism. We measured oxidative stress, expression of microglial activation markers, and inflammatory indexes. The results show that TSLP treatment increased the expression of TSLP receptors and reduced LPS-induced oxidative stress, inflammation, and the expression of M1-type markers in microglia. Interestingly, TSLP treatment also influenced the differentiation of microglia towards the More >

  • Open Access

    REVIEW

    Microglial TRPV1 in epilepsy: Is it druggable for new antiepileptic treatment?

    JIAO HU, JIALU MO, XIANGLIN CHENG*

    BIOCELL, Vol.47, No.8, pp. 1689-1701, 2023, DOI:10.32604/biocell.2023.029409 - 28 August 2023

    Abstract Epilepsy is one of the most common neurological diseases worldwide with a high prevalence and unknown pathogenesis. Further, its control is challenging. It is generally accepted that an imbalance between the excitatory and inhibitory properties of the central nervous system (CNS) leads to a large number of abnormally synchronized neuronal discharges in the brain. Transient receptor potential vanilloid protein type 1 (TRPV1) is a non-selective cation channel that contributes to the regulation of the nervous system and influences the excitability of the nervous system. This includes the release of neurotransmitters, action potential generation due to More >

  • Open Access

    REVIEW

    Mesenchymal stem cells: As a multi-target cell therapy for clearing β-amyloid deposition in Alzheimer’s disease

    RUXIN ZHANG1, CHENGGANG LI2, RUOCHEN DU1, YITONG YUAN1, BICHUN ZHAO1, YUJUAN ZHANG1, CHUNFANG WANG1,*

    BIOCELL, Vol.46, No.3, pp. 583-592, 2022, DOI:10.32604/biocell.2022.017248 - 18 November 2021

    Abstract Extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) are the pathological hallmarks of Alzheimer’s disease (AD). Studies have shown that aggregates of extracellular Aβ can induce neuroinflammation mediated neurotoxic signaling through microglial activation and release of pro-inflammatory factors. Thus, modulation of Aβ might be a potential therapeutic strategy for modifying disease progression. Recently, a large number of reports have confirmed the beneficial effects of mesenchymal stem cells (MSCs) on AD. It is believed to reduce neuroinflammation, reduce Aβ amyloid deposits and NFTs, increase acetylcholine levels, promote neurogenesis, reduce neuronal damage, and improve working memory and More >

  • Open Access

    REVIEW

    Microglia-precursor cell interactions in health and in pathology

    Estela M. MUÑOZ

    BIOCELL, Vol.42, No.2, pp. 41-46, 2018, DOI:10.32604/biocell.2018.07011

    Abstract Until recently, microglia were mainly known as the resident phagocytes of the brain, i.e. the ‘immunological warriors’ of the brain. However, extensive knowledge is being accumulated about the functions of microglia beyond immunity. Nowadays, it is well accepted that microglial cells are highly dynamic and responsive, and that they intervene in a dual manner in many developmental processes that shape the central nervous system, including neurogenesis, gliogenesis, spatial patterning, synaptic formation and elimination, and neural circuit establishment and maturation. The differentiation and the pool of precursor cells were also shown to be under microglia More >

Displaying 1-10 on page 1 of 9. Per Page