Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    CRITICAL MULTISCALE FLOW FOR INTERFACIAL SLIPPAGE IN MICROCHANNEL

    Zhipeng Tanga, Yongbin Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-5, 2020, DOI:10.5098/hmt.14.26

    Abstract The critical flow rate through a micro/nano slit pore for starting the adsorbed layer-fluid or adsorbed layer-wall interfacial slippage is calculated by a multiscale scheme. There are the physical adsorbed layers on the channel walls and the intermediate continuum fluid which are respectively in noncontinuum and continuum flows. The flow factor approach model for nanoscale flow is used to simulate the adsorbed layer flow, and a continuum model describes the continuum fluid flow. The boundary between the adsorbed layer and the continuum fluid or the boundary between the adsorbed layer and the channel wall are More >

  • Open Access

    ARTICLE

    MULTISCALE OR NO MULTISCALE ANALYSIS FOR MASS TRANSFER IN A MICRO/NANOCHANNEL?

    Zhipeng Tanga, Yongbin Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-6, 2020, DOI:10.5098/hmt.15.11

    Abstract The mass flow rate through a micro/nano channel is calculated by a multiscale analysis when the thickness of the adsorbed layer on the channel wall is comparable to the channel height and the interfacial slippage on the adsorbed layer-wall surface interface occurs or not. The calculation is compared with that from conventional continuum flow theory. It is found that when the ratio More >

  • Open Access

    ARTICLE

    INFLUENCE OF THE FLUID-WALL INTERACTION ON THE MULTISCALE FLOW THROUGH A MICRO SLIT PORE CONSIDERING THE ADSORBED LAYER-FLUID INTERFACIAL SLIPPAGE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-6, 2019, DOI:10.5098/hmt.13.27

    Abstract A multiscale analysis is carried out for the pressure driven flow rate through a micro/nano slit pore when the adsorbed layer-fluid interfacial slippage is considered. The flow of the adsorbed layer on the channel wall is described by the flow factor approach model for nanoscale flow, and the flow of the continuum fluid intermediate between the two adsorbed layers is described by a continuum fluid model. The adsorbed layer-fluid interfacial slippage is considered, while the adsorbed layer-wall surface interfacial slippage is ignored. The weak, medium-level and strong fluid-wall interactions and the solid adsorbed layer assumption… More >

  • Open Access

    ARTICLE

    MODELING OF MICRO/NANO CHANNEL FLOWS

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.19

    Abstract This paper reviews the models for the fluid flow in micro/nano channels developed previously. These models include the full MDS (molecular dynamics simulation) model, the quasi-continuum model, the modified Navier-Stokes equation model, the dissipative particle dynamics method, the lattice Boltzman method, the multiscale hybrid model and the flow factor approach model. It was pointed out that most of the models have their own imperfections like huge time and computer storage consumption for simulating a system of realistic size or inaccuracy because of the model limitation. It was also mentioned that the most challenging is to More >

Displaying 1-10 on page 1 of 4. Per Page