Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (18)
  • Open Access

    PROCEEDINGS

    Wave and Particle Manipulation by Acoustic and Electromagnetic Metamaterials

    Xiaobing Cai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012376

    Abstract Acoustic and Electromagnetic Metamaterials/Metasurface have demonstrated various fascinating functionalities in wave manipulation. However, further employment of the manipulated wave for controlling the movement of discrete particle matter is not so widely investigated. Particle matter, also known as granular matter, granular material etc, is the most common form of matter in nature, and so the effective control of granular matter is closely related to engineering and daily life. The use of sound waves and electromagnetic waves to manipulate the granular matter has been widely used in printing, environmental protection, pharmaceuticals and many other fields. However, in… More >

  • Open Access

    PROCEEDINGS

    On Broadband Continuum Modeling of Lattice Metamaterials

    Jinxing Liu1,*, Binying Wang1, Changqing Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011544

    Abstract Unlike classical condensed matters with the characteristic microstructural size far smaller than the undergoing wavelength, lattice metamaterials call for a kind of subwavelength continuum modeling, which should be able to provide successful predictions throughout the first Brillouin zone. We classify lattices into two groups. The first category stands for the mass-spring systems composed of dump masses and massless springs, for which three attempts have been made: the strain gradient continuum based on wavelength-dependent Taylor’s expansion [1, 2], Pade approximation [3] and Symbiotic Optimal Search (SOS) [4], respectively. The results of these newly developed models agree… More >

  • Open Access

    PROCEEDINGS

    Elastically Isotropic Open-Cell Lattice Metamaterials with Superior Stiffness

    Winston Wai Shing Ma1, Lei Zhang2,3, Junhao Ding1, Shuo Qu1, Xu Song1,*, Michael Yu Wang4,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011319

    Abstract Elastically isotropic open-cell lattice metamaterials exhibit identical elastic properties along arbitrary directions, and are ideal candidates for applications with unknown primary loading directions. Their open-cell properties are preferred for additive manufacturing processes and multifunctional applications requiring mass and heat transfer. This presentation focuses on the design, simulation, fabrication, and experimental tests of elastically isotropic open-cell lattice metamaterials with superior stiffness. First, a family of elastically isotropic truss lattices are analytically devised through combining elementary cubic lattices with contrary elastic anisotropy. The proposed stretching-dominated truss lattices can reach nearly 1/3 of the Hashin-Shtrikman upper bounds at… More >

  • Open Access

    PROCEEDINGS

    Hierarchically Designed Shell-Plate Metamaterials with Excellent Isotropic Yield Strength

    Zongxin Hu1,*, Junhao Ding1, Qingping Ma1, Xu Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011288

    Abstract Hierarchically designed metamaterials can be found in numerous fields such as hard biomaterials and man-made structures. Recently, additively manufactured metamaterials are very promising in meeting the increasing demands for materials providing nearly isotropic yield strength in lightweight engineering as the controlled micro-structures. In this paper, a novel hierarchically shell-plate lattice structures are introduced by placing the plates along the closed shell-based structures. With fixed relative density of 10% for hierarchical metamaterials, the effects of different cell sizes and shell thicknesses of shell lattice structures on isotropy are studied. Based on theoretical analysis, the design map… More >

  • Open Access

    PROCEEDINGS

    Design and Deformation Behavior of Multi-phase Mechanical Metamaterials

    Huitian Wang1, Junjie You1, Sha Yin1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.010417

    Abstract Strong and tough mechanical metamaterials are highly demanded in engineering application. Nature inspired dual-phase metamaterial composites was developed and examined, by employing architectured lattice materials with different mechanical properties respectively as the constituent matrix and reinforcement phases. Then, the reinforcement phase was incorporated into the matrix phase with specific patterning. The composite metamaterials were simply fabricated using additive manufacturing. From quasistatic compression tests, the strength and toughness could be simultaneously enhanced after the addition of reinforcement phase grains. Through simulation modeling, effects of dual-phase distribution, elementary architecture, parent material and defects on mechanical properties of More >

  • Open Access

    PROCEEDINGS

    Topological Design of Negative Poisson’s Ratio Material Microstructure Under Large Deformation with a Gradient-Free Method

    Pai Liu1,*, Weida Wu1, Yangjun Luo1, Yifan Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09893

    Abstract Lightweight metamaterials with negative Poisson’s ratios (NPRs) have great potential for controlling deformation, absorbing energy, etc. The topology optimization [1] technique is an effective way to design metamaterials. However, as studied in [2], the NPR metamaterial configuration obtained under small deformation assumption may not maintain the desired Poisson’s ratio under relatively large deformation conditions. This paper focuses on the large-deformation NPR metamaterial design based on a gradient-free topology optimization method, i.e. the material-field series expansion (MFSE) method [3]. The metamaterial’s performance is evaluated using the finite element method, taking into account the geometry nonlinearity. By… More >

  • Open Access

    ARTICLE

    Multi-Band Metamaterial Antenna for Terahertz Applications

    Adel Y. I. Ashyap1, M. Inam2, M. R. Kamarudin1, M. H. Dahri3, Z. A. Shamsan4,*, K. Almuhanna4, F. Alorifi4

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1765-1782, 2023, DOI:10.32604/cmc.2023.030618 - 22 September 2022

    Abstract A multi-band metamaterial antenna is proposed to operate at the terahertz (THz) band for medical applications. The proposed structure is designed on a polyimide as a support layer, and its radiating elements are made of graphene. Initially, the design is started with a conventional shape showing a single operating frequency at 1.1 THz. To achieve a multi-band operating frequency, the conventional shape was replaced with the proposed metamaterial as a radiating patch that has properties not exist in nature. The multi-band frequencies are obtained without compromising the overall size of the design. The overall size… More >

  • Open Access

    ARTICLE

    A New Fuzzy Controlled Antenna Network Proposal for Small Satellite Applications

    Chafaa Hamrouni1,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4233-4248, 2022, DOI:10.32604/cmc.2022.023453 - 21 April 2022

    Abstract This research contributes to small satellite system development based on electromagnetic modeling and an integrated meta-materials antenna networks design for multimedia transmission contents. It includes an adaptive nonsingular mode tracking control design for small satellites systems using fuzzy waveless antenna networks. By analyzing and modeling based on electromagnetic methods, propagation properties of guided waves from metallic structures with simple or complex forms charge partially or entirely by anisotropic materials such as metamaterials. We propose a system control rule to omit uncertainties, including the inevitable approximation errors resulting from the finite number of fuzzy signal power… More >

  • Open Access

    ARTICLE

    Left-Handed Characteristics Tunable C-Shaped Varactor Loaded Textile Metamaterial for Microwave Applications

    Samir Salem Al-Bawri1, Mohammad Tariqul Islam2,*, Kabir Hossain3,4, Thennarasan Sabapathy3,4, Muzammil Jusoh3,4

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 611-628, 2022, DOI:10.32604/cmc.2022.021244 - 03 November 2021

    Abstract This paper presents a textile-based C-shaped split-ring resonators (SRR) metamaterial (MTM) unit cells with an electrical tunability function. The proposed MTM was composed of two symmetrical C-shaped SRR combined with a central diagonal metal bar, whereas the RF varactor diode is placed on the backside of the splitted ground plane. Stopband behavior of single and array MTM unit cells were analyzed while the achieved negative index physical characteristics were widely studies. Though four different MTM arrays (i.e., 1 × 1, 1 × 2, 2 × 1, and 2 × 2) were analyzed in simulation, a 2… More >

  • Open Access

    ARTICLE

    Topology and Shape Optimization of 2-D and 3-D Micro-Architectured Thermoelastic Metamaterials Using a Parametric Level Set Method

    Ellie Vineyard1, Xin-Lin Gao2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 819-854, 2021, DOI:10.32604/cmes.2021.015688 - 24 May 2021

    Abstract 2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method. An asymptotic homogenization approach is employed to obtain the effective thermoelastic properties of the multiphase metamaterials. The -constraint multi-objective optimization method is adopted in the formulation. The coefficient of thermal expansion (CTE) and Poisson’s ratio (PR) are chosen as two objective functions, with the CTE optimized and the PR treated as a constraint. The optimization problems are solved by using the method of moving asymptotes. Effective isotropic and anisotropic CTEs More >

Displaying 1-10 on page 1 of 18. Per Page