Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    PROCEEDINGS

    Local Von Mises Stress Change in CuZr Metallic Glass as an Indicator of the Stress Response

    Ivan Lobzenko1,*, Tomohito Tsuru1, Yoshinori Shiihara2, Takuya Iwashita3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012770

    Abstract Revealing the origin of the mechanical properties of metallic glasses (MG) is a long-standing problem. MGs respond to the external strain with the activation of collective atomic motion, but the triggers of such motions are not revealed yet, in contrast to the well-defined dislocations in crystals. In the present study we show that the change of atomic Von Mises stress is one of the key local parameters to indicate the stress response to a shear strain in metallic glass. Four random Cu50%Zr50% structures were prepared in first-principles molecular dynamics cooling process. Structures were then put… More >

  • Open Access

    PROCEEDINGS

    Superior Mechanical Properties of a Zr-Based Bulk Metallic Glass via Laser Powder Bed Fusion Process Control

    Bosong Li1, Jamie J. Kruzic1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011331

    Abstract Additive manufacturing has made the fabrication of large-dimensioned bulk metallic glasses (BMGs) achievable; however, questions remain regarding how to control the processing parameters to obtain dense and fully amorphous BMGs with desirable mechanical properties. Here, laser powder bed fusion (LPBF) was used to produce dense and fully amorphous Zr59.3Cu28.8Nb1.5Al10.4 BMG samples from two different starting powders within a large processing window of laser powers and scanning speeds. X-ray diffraction (XRD) revealed that fully amorphous materials with high relative densities (>99%) were obtained when the LPBF energy density ranged from ~20 J/mm3 up to ~33 J/mm3 for coarse… More >

  • Open Access

    ARTICLE

    Thermal Analysis by Means of Differential Scanning Calorimetry of the Characteristic Thermodynamic Temperatures of a Cu-Zr-Al Bulk Metallic Glass

    Yanhong Li*, Bing Li, Xinhui Fan, Ke Yang, Xin Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 71-80, 2022, DOI:10.32604/fdmp.2022.017922 - 10 November 2021

    Abstract In this study a Cu43Zr48Al9 bulk metallic glass prepared by the copper mold casting method is considered. In recent years, Cu-Zr-Al systems like this have enjoyed widespread attention due to their high strength, high hardness, high corrosion resistance and low cost. Here samples of this substance are studied using DSC (Differential scanning calorimetry) to determine the effect of different test conditions (heating rate, sample mass, sample specific surface area and sample crystal phase) on the characteristic thermodynamic temperature of the bulk metallic glass. Experimental results show that almost all of the five characteristic thermodynamic temperatures More >

  • Open Access

    ABSTRACT

    Symmetric Notches Cause Strengthening in Brittle Metallic glasses

    Yun Teng1, Zhendong Sha1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 18-18, 2021, DOI:10.32604/icces.2021.08471

    Abstract For all engineering materials, the flaws are introduced inevitably from fabrication, mechanical damage, and corrosion. These stress raisers always induce catastrophic failures and it is therefore of great importance to understand the effect of flaws on the mechanical properties of engineering materials. The effect of flaws on metallic glasses (MGs) is a debatable topic because many relevant works have reported notch strengthening, notch weakening and notch insensitivity for brittle MGs. The significant notch strengthening of MGs was attributed to the transition of failure mechanism, from catastrophic shear banding to ductile fracture. Here we investigate systematically… More >

  • Open Access

    ARTICLE

    Thickness Effect of Nanocrystalline Layer on the Deformation Mechanism of Amorphous/Crystalline Multilayered Structure

    Wen-Jay Lee1,*, Yu-Chien Lo2, Anchen Yang3, Kuanpeng Chen3, Nan-Yow Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 293-304, 2019, DOI:10.32604/cmes.2019.06620

    Abstract Different thickness of amorphous/nanocrystalline multi-layered structure can be used to modulate the strength and ductility of the composite materials. In this work, molecular dynamics simulations were conducted to study the thickness effect of nanocrystalline layer on mechanical properties and deformation behavior of the Cu64Zr36/Cu multi-layer structure. The stress-strain relationship, local stress, local strain, and deformation mechanism are investigated. The results reveal that the change of thickness of the crystalline layer significantly affects the mechanical properties and deformation behavior. As the strain at the elastic region, the amorphous Cu64Zr36 layer dominates the mechanical behavior, leading the fact More >

  • Open Access

    ARTICLE

    Simulation of the Deformation Mechanisms of Bulk Metallic Glass (BMG) Foam using the Material Point Method

    Jin Ma1, Jay C. Hanan1, Ranga Komanduri1, Hongbing Lu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.4, pp. 349-384, 2012, DOI:10.3970/cmes.2012.086.349

    Abstract Amorphous metallic foams are an exciting class of materials for an array of high impact absorption applications, the mechanical behavior of which is only beginning to be characterized. To determine mechanical properties, guide processing, and engineer the microstructure for impact absorption, simulation of the mechanical properties is necessary as experimental determination alone can be expensive and time consuming. In this investigation, the material point method (MPM) with C1 continuous shape function is used to simulate the response of a bulk metallic glass (BMG) closed-cell foam (Pd42.5Cu30Ni7.5P20) under compression. The BMG foam was also tested experimentally… More >

  • Open Access

    ABSTRACT

    Length scale effects on the shear localization process in metallic glasses: A theoretical and computational study

    Prakash Thamburaja

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.3, pp. 79-80, 2011, DOI:10.3970/icces.2011.020.079

    Abstract Some recent experiments on sub-micron and nano-sized metallic glass specimens have shown that the shear localization process becomes more stable and less catastrophic when compared to the response exhibited by large sample sizes. This leads to the discovery that the shear localization process and fracture can be delayed by decreasing sample volume. In this work we develop a non-local and finite-deformation-based constitutive model using thermodynamic principles and the theory of micro-force balance to study the causes for the aforementioned observations. The constitutive model has also been implemented into a commercially-available finite-element program by writing a… More >

  • Open Access

    ABSTRACT

    Effects of strain rate and temperature on the steady state flow stress of metallic glasses

    ZHIBIN LU, YUANLI XU, HANG SHAO, JIANGONG LI

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.2, pp. 63-64, 2011, DOI:10.3970/icces.2011.016.063

    Abstract This paper reports the effects of strain rate and temperature on the steady state flow stress of metallic glasses. Based on the energy conservation between the applied mechanical work and the increased energy in metallic glasses at steady state flow, the steady state stress of metallic glasses was found to depend on difference in free volume between undeformed state and steady state of flow. The effects of strain rate (or temperature) on the steady state flow stress can be described by a linear relationship between the steady state flow stress and temperature (or logarithm of More >

  • Open Access

    ABSTRACT

    Influences of Nano-sized Crystalline Particles on the Mechanical Properties of Metallic Glass-- A Molecular Dynamics Study

    R. Matsumoto1, N. Miyazaki1, M. Nakagaki2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.4, pp. 223-230, 2007, DOI:10.3970/icces.2007.004.223

    Abstract The mechanical properties of amorphous metals and metallic glasses are remarkably changed by precipitated crystalline particles. In this paper, the effects of crystal particle size and volume fraction on the flow stress of the metallic glass are evaluated by molecular dynamics simulations. The investigated volume fraction ranges from 0% (metallic glass) to 100% (nanocrystalline metal), and the average particle diameter ranges from 1nm to 12nm. It is revealed that the dispersed particle effects on the flow stress are very small in the entire volume fraction range when the average particle diameter is smaller than 3 More >

Displaying 1-10 on page 1 of 9. Per Page