JIAYING QIU1, YAN CHANG5, WENPENG LIANG1, MENGSI LIN1, HUI XU2, WANQING XU4, QINGWEN ZHU1, HAIBO ZHANG3,*, ZHENYU ZHANG1,*
BIOCELL, Vol.47, No.11, pp. 2351-2359, 2023, DOI:10.32604/biocell.2023.031043
- 27 November 2023
Abstract Denervation-induced skeletal muscle atrophy can potentially cause the decline in the quality of life of patients and an increased risk of mortality. Complex pathophysiological mechanisms with dynamic alterations have been documented in skeletal muscle atrophy resulting from innervation loss. Hence, an in-depth comprehension of the key mechanisms and molecules governing skeletal muscle atrophy at varying stages, along with targeted treatment and protection, becomes essential for effective atrophy management. Our preliminary research categorizes the skeletal muscle atrophy process into four stages using microarray analysis. This review extensively discusses the pathways and molecules potentially implicated in regulating… More >