Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks

    Yasir Maqsood1, Syed Muhammad Usman1,*, Musaed Alhussein2, Khursheed Aurangzeb2,*, Shehzad Khalid3, Muhammad Zubair4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2795-2811, 2024, DOI:10.32604/cmc.2024.049410 - 15 May 2024

    Abstract Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease management. With advancements in deep learning algorithms, researchers have proposed many methods for the automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance in existing… More >

  • Open Access

    ARTICLE

    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793 - 16 April 2024

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case… More >

  • Open Access

    ARTICLE

    Broad Federated Meta-Learning of Damaged Objects in Aerial Videos

    Zekai Li1, Wenfeng Wang2,3,4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2881-2899, 2023, DOI:10.32604/cmes.2023.028670 - 03 August 2023

    Abstract We advanced an emerging federated learning technology in city intelligentization for tackling a real challenge— to learn damaged objects in aerial videos. A meta-learning system was integrated with the fuzzy broad learning system to further develop the theory of federated learning. Both the mixed picture set of aerial video segmentation and the 3D-reconstructed mixed-reality data were employed in the performance of the broad federated meta-learning system. The study results indicated that the object classification accuracy is up to 90% and the average time cost in damage detection is only 0.277 s. Consequently, the broad federated More >

  • Open Access

    ARTICLE

    Crop Disease Recognition Based on Improved Model-Agnostic Meta-Learning

    Xiuli Si1, Biao Hong1, Yuanhui Hu1, Lidong Chu2,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6101-6118, 2023, DOI:10.32604/cmc.2023.036829 - 29 April 2023

    Abstract Currently, one of the most severe problems in the agricultural industry is the effect of diseases and pests on global crop production and economic development. Therefore, further research in the field of crop disease and pest detection is necessary to address the mentioned problem. Aiming to identify the diseased crops and insect pests timely and accurately and perform appropriate prevention measures to reduce the associated losses, this article proposes a Model-Agnostic Meta-Learning (MAML) attention model based on the meta-learning paradigm. The proposed model combines meta-learning with basic learning and adopts an Efficient Channel Attention (ECA)… More >

  • Open Access

    ARTICLE

    Meta-Learning Multi-Scale Radiology Medical Image Super-Resolution

    Liwei Deng1, Yuanzhi Zhang1, Xin Yang2,*, Sijuan Huang2, Jing Wang3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2671-2684, 2023, DOI:10.32604/cmc.2023.036642 - 31 March 2023

    Abstract High-resolution medical images have important medical value, but are difficult to obtain directly. Limited by hardware equipment and patient’s physical condition, the resolution of directly acquired medical images is often not high. Therefore, many researchers have thought of using super-resolution algorithms for secondary processing to obtain high-resolution medical images. However, current super-resolution algorithms only work on a single scale, and multiple networks need to be trained when super-resolution images of different scales are needed. This definitely raises the cost of acquiring high-resolution medical images. Thus, we propose a multi-scale super-resolution algorithm using meta-learning. The algorithm… More >

  • Open Access

    ARTICLE

    Multi-Task Deep Learning with Task Attention for Post-Click Conversion Rate Prediction

    Hongxin Luo, Xiaobing Zhou*, Haiyan Ding, Liqing Wang

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3583-3593, 2023, DOI:10.32604/iasc.2023.036622 - 15 March 2023

    Abstract Online advertising has gained much attention on various platforms as a hugely lucrative market. In promoting content and advertisements in real life, the acquisition of user target actions is usually a multi-step process, such as impression→click→conversion, which means the process from the delivery of the recommended item to the user’s click to the final conversion. Due to data sparsity or sample selection bias, it is difficult for the trained model to achieve the business goal of the target campaign. Multi-task learning, a classical solution to this problem, aims to generalize better on the original task… More >

  • Open Access

    ARTICLE

    SW-Net: A novel few-shot learning approach for disease subtype prediction

    YUHAN JI1, YONG LIANG1,*, ZIYI YANG2, NING AI1

    BIOCELL, Vol.47, No.3, pp. 569-579, 2023, DOI:10.32604/biocell.2023.025865 - 03 January 2023

    Abstract Few-shot learning is becoming more and more popular in many fields, especially in the computer vision field. This inspires us to introduce few-shot learning to the genomic field, which faces a typical few-shot problem because some tasks only have a limited number of samples with high-dimensions. The goal of this study was to investigate the few-shot disease sub-type prediction problem and identify patient subgroups through training on small data. Accurate disease sub-type classification allows clinicians to efficiently deliver investigations and interventions in clinical practice. We propose the SW-Net, which simulates the clinical process of extracting… More >

Displaying 1-10 on page 1 of 7. Per Page