Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in High-Speed Impact, Penetration and Perforation Problems

    Z. D. Han1, H. T. Liu1, A. M. Rajendran2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 119-128, 2006, DOI:10.3970/cmes.2006.014.119

    Abstract This paper presents the implementation of a three-dimensional dynamic code, for contact, impact, and penetration mechanics, based on the Meshless Local Petrov-Galerkin (MLPG) approach. In the current implementation, both velocities and velocity-gradients are interpolated independently, and their compatibility is enforced only at nodal points. As a result, the time consuming differentiations of the shape functions at all integration points is avoided, and therefore, the numerical process becomes more stable and efficient. The ability of the MLPG code for solving high-speed contact, impact and penetration problems with large deformations and rotations is demonstrated through several computational More >

  • Open Access

    ARTICLE

    Computational Modeling of Impact Response with the RG Damage Model and the Meshless Local Petrov-Galerkin (MLPG) Approaches

    H. T. Liu1, Z. D. Han1, A. M. Rajendran2, S. N. Atluri3

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 43-54, 2006, DOI:10.3970/cmc.2006.004.043

    Abstract The Rajendran-Grove (RG) ceramic damage model is a three-dimensional internal variable based constitutive model for ceramic materials, with the considerations of micro-crack extension and void collapse. In the present paper, the RG ceramic model is implemented into the newly developed computational framework based on the Meshless Local Petrov-Galerkin (MLPG) method, for solving high-speed impact and penetration problems. The ability of the RG model to describe the internal damage evolution and the effective material response is investigated. Several numerical examples are presented, including the rod-on-rod impact, plate-on-plate impact, and ballistic penetration. The computational results are compared More >

Displaying 1-10 on page 1 of 2. Per Page