Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    An Updated Lagrangian Particle Hydrodynamics (ULPH)-NOSBPD Coupling Approach for Modeling Fluid-Structure Interaction Problem

    Zhen Wang1, Junsong Xiong1, Shaofan Li2, Xin Lai1,3,*, Xiang Liu3, Lisheng Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 491-523, 2024, DOI:10.32604/cmes.2024.052923 - 20 August 2024

    Abstract A fluid-structure interaction approach is proposed in this paper based on Non-Ordinary State-Based Peridynamics (NOSB-PD) and Updated Lagrangian Particle Hydrodynamics (ULPH) to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid. In the coupled framework, the NOSB-PD theory describes the deformation and fracture of the solid material structure. ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy. The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid… More >

  • Open Access

    ARTICLE

    A Novel Meshfree Analysis of Transient Heat Conduction Problems Using RRKPM

    Hongfen Gao1, Gaofeng Wei2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1793-1814, 2022, DOI:10.32604/cmes.2022.019687 - 19 April 2022

    Abstract By introducing the radial basis functions (RBFs) into the reproducing kernel particle method (RKPM), the calculating accuracy and stability of the RKPM can be improved, and a novel meshfree method of the radial basis RKPM (meshfree RRKPM) is proposed. Meanwhile, the meshfree RRKPM is applied to transient heat conduction problems (THCP), and the corresponding equations of the meshfree RRKPM for the THCP are derived. The two-point time difference scheme is selected to discretize the time of the THCP. Finally, the numerical results illustrate the effectiveness of the meshfree RRKPM for the THCP. More >

  • Open Access

    ARTICLE

    The Method of Fundamental Solutions for Two-Dimensional Elastostatic Problems with Stress Concentration and Highly Anisotropic Materials

    M. R. Hematiyan1,*, B. Jamshidi1, M. Mohammadi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1349-1369, 2022, DOI:10.32604/cmes.2022.018235 - 30 December 2021

    Abstract The method of fundamental solutions (MFS) is a boundary-type and truly meshfree method, which is recognized as an efficient numerical tool for solving boundary value problems. The geometrical shape, boundary conditions, and applied loads can be easily modeled in the MFS. This capability makes the MFS particularly suitable for shape optimization, moving load, and inverse problems. However, it is observed that the standard MFS lead to inaccurate solutions for some elastostatic problems with stress concentration and/or highly anisotropic materials. In this work, by a numerical study, the important parameters, which have significant influence on the… More >

  • Open Access

    ARTICLE

    Three-Dimensional Meshfree Analysis of Interlocking Concrete Blocks for Step Seawall Structure

    Hau Nguyen-Ngoc1,2, H. Nguyen-Xuan3, Magd Abdel-Wahab4,5,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 165-178, 2021, DOI:10.32604/cmc.2020.012948 - 30 October 2020

    Abstract This study adapts the flexible characteristic of meshfree method in analyzing three-dimensional (3D) complex geometry structures, which are the interlocking concrete blocks of step seawall. The elastostatic behavior of the block is analysed by solving the Galerkin weak form formulation over local support domain. The 3D moving least square (MLS) approximation is applied to build the interpolation functions of unknowns. The pre-defined number of nodes in an integration domain ranging from 10 to 60 nodes is also investigated for their effect on the studied results. The accuracy and efficiency of the studied method on 3D… More >

  • Open Access

    ARTICLE

    Computational Study of Collective Cell Migration By Meshfree Method

    Jie Bai1,#, Liqiang Lin1,#, Xiaowei Zeng 1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.3, pp. 787-800, 2019, DOI:10.32604/cmes.2019.07159

    Abstract The collective cell migration behavior on a substrate was studied using RKPM meshfree method. The cells were modeled as nematic liquid crystal with hyperelastic cell nucleus. The cell-substrate and cell-cell interactions were modeled by coarse-grained potential forces. Through this study, the pulling and pushing phenomenon during collective cell migration process was observed and it was found that the individual cell mobility significantly influenced the collective cell migratory behavior. More self-propelled cells are in the system along the same direction, the faster the collective group migrates toward coordinated direction. The parametric study on cell-cell adhesion strength More >

  • Open Access

    ARTICLE

    A Size-Dependent Functionally Graded Higher Order Plate Analysis Based on Modified Couple Stress Theory and Moving Kriging Meshfree Method

    T. D. Tran1, Chien H. Thai2,3,*, H. Nguyen-Xuan4,5,*

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 447-483, 2018, DOI:10.32604/cmc.2018.01738

    Abstract A size-dependent computational approach for bending, free vibration and buckling analyses of isotropic and sandwich functionally graded (FG) microplates is in this study presented. We consider both shear deformation and small scale effects through the generalized higher order shear deformation theory and modified couple stress theory (MCST). The present model only retains a single material length scale parameter for capturing properly size effects. A rule of mixture is used to model material properties varying through the thickness of plates. The principle of virtual work is used to derive the discrete system equations which are approximated More >

  • Open Access

    ARTICLE

    Meshfree Method for the Topological Design of Microstructural Composites

    Y. Wang1, E. Lü1,2, J. Zhao1, J. Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.1, pp. 35-53, 2015, DOI:10.3970/cmes.2015.109.035

    Abstract Meshfree methods have found good applications in many new researches, which show very good potential to be powerful numerical tools. As an alternative to the mesh based methods, meshfree methods have the advantage of not using a predefined mesh for the domain discretization. In this study, a mesh free scheme based on the radial point interpolation method was used to solve the topological design of microstructures for composite materials. The explicit form of the radial point interpolation method (RPIM) interpolation augmented with polynomials is presented, which satisfies range-restricted properties and is applicable to integrate a More >

  • Open Access

    ARTICLE

    Patient-Specific Modeling in Urogynecology: A Meshfree Approach

    J.B. Alford1, D.C. Simkins1, R.A. Rembert1, L. Hoyte, MD2

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 129-149, 2014, DOI:10.3970/cmes.2014.098.129

    Abstract Mechanical deformation of tissues in the female pelvic floor is believed to be central to understanding a number of important aspects of women’s health, particularly pelvic floor dysfunction. A 2008 study of US women reported the prevalence of pelvic floor disorders in the 20 and 39 years range as 9.7% with the prevalence increasing with age until it reaches roughly 50% in the 80 and older age group [Nygaard, Barber, Burgio, and et al (2008)]. Clinical observation indicates a strong correlation between problems such as pelvic organ prolapse/urinary incontinence and vaginal childbirth. It is thought… More >

  • Open Access

    ARTICLE

    A Meshfree Method For Mechanics and Conformational Change of Proteins and Their Assemblies

    Ankush Aggarwal1, Jiun-Shyan Chen2, William S. Klug3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.1, pp. 69-99, 2014, DOI:10.3970/cmes.2014.098.069

    Abstract Mechanical properties of proteins play an important role in their biological function. For example, microtubules carry large loads to transport organelles inside the cell, and virus shells undergo changes in shape and mechanical properties during maturation which affect their infectivity. Various theoretical models including continuum elasticity have been applied to study these structural properties, and a significant success has been achieved. But, the previous frameworks lack a connection between the atomic and continuum descriptions. Here this is accomplished through the development of a meshfree framework based on reproducing kernel shape functions for the large deformation… More >

  • Open Access

    ARTICLE

    An approximately H1-optimal Petrov-Galerkin meshfree method: application to computation of scattered light for optical tomography

    N Pimprikar1, J Teresa2, D Roy1,3, R M Vasu4, K Rajan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.1, pp. 33-61, 2013, DOI:10.3970/cmes.2013.092.033

    Abstract Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the More >

Displaying 1-10 on page 1 of 26. Per Page