Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    Leveraging EfficientNetB3 in a Deep Learning Framework for High-Accuracy MRI Tumor Classification

    Mahesh Thyluru Ramakrishna1, Kuppusamy Pothanaicker2, Padma Selvaraj3, Surbhi Bhatia Khan4,7,*, Vinoth Kumar Venkatesan5, Saeed Alzahrani6, Mohammad Alojail6

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 867-883, 2024, DOI:10.32604/cmc.2024.053563 - 15 October 2024

    Abstract Brain tumor is a global issue due to which several people suffer, and its early diagnosis can help in the treatment in a more efficient manner. Identifying different types of brain tumors, including gliomas, meningiomas, pituitary tumors, as well as confirming the absence of tumors, poses a significant challenge using MRI images. Current approaches predominantly rely on traditional machine learning and basic deep learning methods for image classification. These methods often rely on manual feature extraction and basic convolutional neural networks (CNNs). The limitations include inadequate accuracy, poor generalization of new data, and limited ability… More >

  • Open Access

    ARTICLE

    Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images

    Sonali Das1, Saroja Kumar Rout2, Sujit Kumar Panda1, Pradyumna Kumar Mohapatra3, Abdulaziz S. Almazyad4, Muhammed Basheer Jasser5,6,*, Guojiang Xiong7, Ali Wagdy Mohamed8,9

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 893-916, 2024, DOI:10.32604/cmes.2024.051856 - 20 August 2024

    Abstract In blood or bone marrow, leukemia is a form of cancer. A person with leukemia has an expansion of white blood cells (WBCs). It primarily affects children and rarely affects adults. Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body. Identifying leukemia in the initial stage is vital to providing timely patient care. Medical image-analysis-related approaches grant safer, quicker, and less costly solutions while ignoring the difficulties of these invasive processes. It can be simple to generalize Computer vision (CV)-based and image-processing techniques and eradicate human… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340 - 08 July 2024

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    An Improved Lung Cancer Segmentation Based on Nature-Inspired Optimization Approaches

    Shazia Shamas1, Surya Narayan Panda1,*, Ishu Sharma1,*, Kalpna Guleria1, Aman Singh2,3,4, Ahmad Ali AlZubi5, Mallak Ahmad AlZubi6

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1051-1075, 2024, DOI:10.32604/cmes.2023.030712 - 17 November 2023

    Abstract The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis and planning intervention. This research work addresses the major issues pertaining to the field of medical image processing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposes an improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. The better resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In this process, the visual challenges of the K-means are addressed with the integration of four nature-inspired… More >

  • Open Access

    ARTICLE

    Optical Based Gradient-Weighted Class Activation Mapping and Transfer Learning Integrated Pneumonia Prediction Model

    Chia-Wei Jan1, Yu-Jhih Chiu1, Kuan-Lin Chen2, Ting-Chun Yao3, Ping-Huan Kuo1,4,*

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2989-3010, 2023, DOI:10.32604/csse.2023.042078 - 09 November 2023

    Abstract Pneumonia is a common lung disease that is more prone to affect the elderly and those with weaker respiratory systems. However, hospital medical resources are limited, and sometimes the workload of physicians is too high, which can affect their judgment. Therefore, a good medical assistance system is of great significance for improving the quality of medical care. This study proposed an integrated system by combining transfer learning and gradient-weighted class activation mapping (Grad-CAM). Pneumonia is a common lung disease that is generally diagnosed using X-rays. However, in areas with limited medical resources, a shortage of… More >

  • Open Access

    ARTICLE

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

    Vitaliy Suvorov1,2,*, Olga Loboda2, Maria Balakina1, Igor Kulczycki2

    Congenital Heart Disease, Vol.18, No.5, pp. 491-505, 2023, DOI:10.32604/chd.2023.030583 - 10 November 2023

    Abstract Background: Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes. The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case. Methods: We performed the prospective cohort study which included 29 children with congenital heart defects. The hearts and the great vessels were modeled and printed out. Measurements of the same cardiac areas were taken in the… More > Graphic Abstract

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

  • Open Access

    ARTICLE

    Deep Fakes in Healthcare: How Deep Learning Can Help to Detect Forgeries

    Alaa Alsaheel, Reem Alhassoun, Reema Alrashed, Noura Almatrafi, Noura Almallouhi, Saleh Albahli*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2461-2482, 2023, DOI:10.32604/cmc.2023.040257 - 30 August 2023

    Abstract With the increasing use of deep learning technology, there is a growing concern over creating deep fake images and videos that can potentially be used for fraud. In healthcare, manipulating medical images could lead to misdiagnosis and potentially life-threatening consequences. Therefore, the primary purpose of this study is to explore the use of deep learning algorithms to detect deep fake images by solving the problem of recognizing the handling of samples of cancer and other diseases. Therefore, this research proposes a framework that leverages state-of-the-art deep convolutional neural networks (CNN) and a large dataset of More >

  • Open Access

    ARTICLE

    A Robust Approach for Detection and Classification of KOA Based on BILSTM Network

    Abdul Qadir1, Rabbia Mahum1, Suliman Aladhadh2,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1365-1384, 2023, DOI:10.32604/csse.2023.037033 - 28 July 2023

    Abstract A considerable portion of the population now experiences osteoarthritis of the knee, spine, and hip due to lifestyle changes. Therefore, early treatment, recognition and prevention are essential to reduce damage; nevertheless, this time-consuming activity necessitates a variety of tests and in-depth analysis by physicians. To overcome the existing challenges in the early detection of Knee Osteoarthritis (KOA), an effective automated technique, prompt recognition, and correct categorization are required. This work suggests a method based on an improved deep learning algorithm that makes use of data from the knee images after segmentation to detect KOA and… More >

  • Open Access

    ARTICLE

    Automated Colonic Polyp Detection and Classification Enabled Northern Goshawk Optimization with Deep Learning

    Mohammed Jasim Mohammed Jasim1, Bzar Khidir Hussan2, Subhi R. M. Zeebaree3,*, Zainab Salih Ageed4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3677-3693, 2023, DOI:10.32604/cmc.2023.037363 - 31 March 2023

    Abstract The major mortality factor relevant to the intestinal tract is the growth of tumorous cells (polyps) in various parts. More specifically, colonic polyps have a high rate and are recognized as a precursor of colon cancer growth. Endoscopy is the conventional technique for detecting colon polyps, and considerable research has proved that automated diagnosis of image regions that might have polyps within the colon might be used to help experts for decreasing the polyp miss rate. The automated diagnosis of polyps in a computer-aided diagnosis (CAD) method is implemented using statistical analysis. Nowadays, Deep Learning,… More >

  • Open Access

    ARTICLE

    Deep Learning for Image Segmentation: A Focus on Medical Imaging

    Ali F. Khalifa1, Eman Badr1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1995-2024, 2023, DOI:10.32604/cmc.2023.035888 - 06 February 2023

    Abstract Image segmentation is crucial for various research areas. Many computer vision applications depend on segmenting images to understand the scene, such as autonomous driving, surveillance systems, robotics, and medical imaging. With the recent advances in deep learning (DL) and its confounding results in image segmentation, more attention has been drawn to its use in medical image segmentation. This article introduces a survey of the state-of-the-art deep convolution neural network (CNN) models and mechanisms utilized in image segmentation. First, segmentation models are categorized based on their model architecture and primary working principle. Then, CNN categories are More >

Displaying 1-10 on page 1 of 32. Per Page