Maoyang Zou1,2, Jinrong Hu2, Huan Zhang2, Xi Wu2, Jia He2, Zhijie Xu3, Yong Zhong1,*
CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 511-525, 2019, DOI:10.32604/cmc.2019.05912
Abstract For image-guided radiation therapy, radiosurgery, minimally invasive surgery, endoscopy and interventional radiology, one of the important techniques is medical image registration. In our study, we propose a learning-based approach named “FIP-CNNF” for rigid registration of medical image. Firstly, the pixel-level interest points are computed by the full convolution network (FCN) with self-supervise. Secondly, feature detection, descriptor and matching are trained by convolution neural network (CNN). Thirdly, random sample consensus (Ransac) is used to filter outliers, and the transformation parameters are found with the most inliers by iteratively fitting transforms. In addition, we propose “TrFIP-CNNF” which… More >