Mohamed Esmail Karar1,2, Omar Reyad1,3, Mohammed Abd-Elnaby4, Abdel-Haleem Abdel-Aty5,6, Marwa Ahmed Shouman7,*
CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2295-2312, 2021, DOI:10.32604/cmc.2021.018671
- 21 July 2021
Abstract Lightweight deep convolutional neural networks (CNNs) present a good solution to achieve fast and accurate image-guided diagnostic procedures of COVID-19 patients. Recently, advantages of portable Ultrasound (US) imaging such as simplicity and safe procedures have attracted many radiologists for scanning suspected COVID-19 cases. In this paper, a new framework of lightweight deep learning classifiers, namely COVID-LWNet is proposed to identify COVID-19 and pneumonia abnormalities in US images. Compared to traditional deep learning models, lightweight CNNs showed significant performance of real-time vision applications by using mobile devices with limited hardware resources. Four main lightweight deep learning… More >