Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Spinal Vertebral Fracture Detection and Fracture Level Assessment Based on Deep Learning

    Yuhang Wang1,*, Zhiqin He1, Qinmu Wu1, Tingsheng Lu2, Yu Tang1, Maoyun Zhu1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1377-1398, 2024, DOI:10.32604/cmc.2024.047379 - 25 April 2024

    Abstract This paper addresses the common orthopedic trauma of spinal vertebral fractures and aims to enhance doctors’ diagnostic efficiency. Therefore, a deep-learning-based automated diagnostic system with multi-label segmentation is proposed to recognize the condition of vertebral fractures. The whole spine Computed Tomography (CT) image is segmented into the fracture, normal, and background using U-Net, and the fracture degree of each vertebra is evaluated (Genant semi-qualitative evaluation). The main work of this paper includes: First, based on the spatial configuration network (SCN) structure, U-Net is used instead of the SCN feature extraction network. The attention mechanism and… More >

  • Open Access

    ARTICLE

    Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation

    Muwei Jian1,2,#,*, Ronghua Wu1,#, Hongyu Chen1, Lanqi Fu3, Chengdong Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 705-716, 2023, DOI:10.32604/cmes.2023.027425 - 23 April 2023

    Abstract In intelligent perception and diagnosis of medical equipment, the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases (e.g., diabetes and hypertension). Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results. To address this challenge, we design a Dual-Branch-UNet framework, which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation. To be more explicit, we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of… More >

  • Open Access

    ARTICLE

    Horizontal Voting Ensemble Based Predictive Modeling System for Colon Cancer

    Ushaa Eswaran1,*, S. Anand2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1917-1928, 2023, DOI:10.32604/csse.2023.032523 - 09 February 2023

    Abstract Colon cancer is the third most commonly diagnosed cancer in the world. Most colon AdenoCArcinoma (ACA) arises from pre-existing benign polyps in the mucosa of the bowel. Thus, detecting benign at the earliest helps reduce the mortality rate. In this work, a Predictive Modeling System (PMS) is developed for the classification of colon cancer using the Horizontal Voting Ensemble (HVE) method. Identifying different patterns in microscopic images is essential to an effective classification system. A twelve-layer deep learning architecture has been developed to extract these patterns. The developed HVE algorithm can increase the system’s performance… More >

  • Open Access

    ARTICLE

    End-to-End 2D Convolutional Neural Network Architecture for Lung Nodule Identification and Abnormal Detection in Cloud

    Safdar Ali1, Saad Asad1, Zeeshan Asghar1, Atif Ali1, Dohyeun Kim2,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 461-475, 2023, DOI:10.32604/cmc.2023.035672 - 06 February 2023

    Abstract The extent of the peril associated with cancer can be perceived from the lack of treatment, ineffective early diagnosis techniques, and most importantly its fatality rate. Globally, cancer is the second leading cause of death and among over a hundred types of cancer; lung cancer is the second most common type of cancer as well as the leading cause of cancer-related deaths. Anyhow, an accurate lung cancer diagnosis in a timely manner can elevate the likelihood of survival by a noticeable margin and medical imaging is a prevalent manner of cancer diagnosis since it is… More >

  • Open Access

    ARTICLE

    Automated Skin Lesion Diagnosis and Classification Using Learning Algorithms

    A. Soujanya1,*, N. Nandhagopal2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 675-687, 2023, DOI:10.32604/iasc.2023.025930 - 06 June 2022

    Abstract Due to the rising occurrence of skin cancer and inadequate clinical expertise, it is needed to design Artificial Intelligence (AI) based tools to diagnose skin cancer at an earlier stage. Since massive skin lesion datasets have existed in the literature, the AI-based Deep Learning (DL) models find useful to differentiate benign and malignant skin lesions using dermoscopic images. This study develops an Automated Seeded Growing Segmentation with Optimal EfficientNet (ARGS-OEN) technique for skin lesion segmentation and classification. The proposed ASRGS-OEN technique involves the design of an optimal EfficientNet model in which the hyper-parameter tuning process More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images

    Areej A. Malibari1, Reem Alshahrani2, Fahd N. Al-Wesabi3,*, Siwar Ben Haj Hassine3, Mimouna Abdullah Alkhonaini4, Anwer Mustafa Hilal5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3799-3813, 2022, DOI:10.32604/cmc.2022.026131 - 29 March 2022

    Abstract Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases. Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer. Since the manual screening process of prostate cancer is difficult, automated diagnostic methods become essential. This study develops a novel Deep Learning based Prostate Cancer Classification (DTL-PSCC) model using MRI images. The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors. In addition, the fuzzy k-nearest neighbour (FKNN) model is utilized More >

  • Open Access

    ARTICLE

    Breast Mammogram Analysis and Classification Using Deep Convolution Neural Network

    V. Ulagamuthalvi1, G. Kulanthaivel2,*, A. Balasundaram3, Arun Kumar Sivaraman4

    Computer Systems Science and Engineering, Vol.43, No.1, pp. 275-289, 2022, DOI:10.32604/csse.2022.023737 - 23 March 2022

    Abstract One of the fast-growing disease affecting women’s health seriously is breast cancer. It is highly essential to identify and detect breast cancer in the earlier stage. This paper used a novel advanced methodology than machine learning algorithms such as Deep learning algorithms to classify breast cancer accurately. Deep learning algorithms are fully automatic in learning, extracting, and classifying the features and are highly suitable for any image, from natural to medical images. Existing methods focused on using various conventional and machine learning methods for processing natural and medical images. It is inadequate for the image… More >

  • Open Access

    ARTICLE

    Fuzzy-Based Automatic Epileptic Seizure Detection Framework

    Aayesha1, Muhammad Bilal Qureshi2, Muhammad Afzaal3, Muhammad Shuaib Qureshi4, Jeonghwan Gwak5,6,7,8,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5601-5630, 2022, DOI:10.32604/cmc.2022.020348 - 11 October 2021

    Abstract Detection of epileptic seizures on the basis of Electroencephalogram (EEG) recordings is a challenging task due to the complex, non-stationary and non-linear nature of these biomedical signals. In the existing literature, a number of automatic epileptic seizure detection methods have been proposed that extract useful features from EEG segments and classify them using machine learning algorithms. Some characterizing features of epileptic and non-epileptic EEG signals overlap; therefore, it requires that analysis of signals must be performed from diverse perspectives. Few studies analyzed these signals in diverse domains to identify distinguishing characteristics of epileptic EEG signals.… More >

  • Open Access

    ARTICLE

    Artifacts Reduction Using Multi-Scale Feature Attention Network in Compressed Medical Images

    Seonjae Kim, Dongsan Jun*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3267-3279, 2022, DOI:10.32604/cmc.2022.020651 - 27 September 2021

    Abstract Medical image compression is one of the essential technologies to facilitate real-time medical data transmission in remote healthcare applications. In general, image compression can introduce undesired coding artifacts, such as blocking artifacts and ringing effects. In this paper, we proposed a Multi-Scale Feature Attention Network (MSFAN) with two essential parts, which are multi-scale feature extraction layers and feature attention layers to efficiently remove coding artifacts of compressed medical images. Multi-scale feature extraction layers have four Feature Extraction (FE) blocks. Each FE block consists of five convolution layers and one CA block for weighted skip connection. More >

  • Open Access

    ARTICLE

    Lightweight Transfer Learning Models for Ultrasound-Guided Classification of COVID-19 Patients

    Mohamed Esmail Karar1,2, Omar Reyad1,3, Mohammed Abd-Elnaby4, Abdel-Haleem Abdel-Aty5,6, Marwa Ahmed Shouman7,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2295-2312, 2021, DOI:10.32604/cmc.2021.018671 - 21 July 2021

    Abstract Lightweight deep convolutional neural networks (CNNs) present a good solution to achieve fast and accurate image-guided diagnostic procedures of COVID-19 patients. Recently, advantages of portable Ultrasound (US) imaging such as simplicity and safe procedures have attracted many radiologists for scanning suspected COVID-19 cases. In this paper, a new framework of lightweight deep learning classifiers, namely COVID-LWNet is proposed to identify COVID-19 and pneumonia abnormalities in US images. Compared to traditional deep learning models, lightweight CNNs showed significant performance of real-time vision applications by using mobile devices with limited hardware resources. Four main lightweight deep learning… More >

Displaying 1-10 on page 1 of 11. Per Page