Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Speech Enhancement via Mask-Mapping Based Residual Dense Network

    Lin Zhou1,*, Xijin Chen1, Chaoyan Wu1, Qiuyue Zhong1, Xu Cheng2, Yibin Tang3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1259-1277, 2023, DOI:10.32604/cmc.2023.027379 - 22 September 2022

    Abstract Masking-based and spectrum mapping-based methods are the two main algorithms of speech enhancement with deep neural network (DNN). But the mapping-based methods only utilizes the phase of noisy speech, which limits the upper bound of speech enhancement performance. Masking-based methods need to accurately estimate the masking which is still the key problem. Combining the advantages of above two types of methods, this paper proposes the speech enhancement algorithm MM-RDN (masking-mapping residual dense network) based on masking-mapping (MM) and residual dense network (RDN). Using the logarithmic power spectrogram (LPS) of consecutive frames, MM estimates the ideal… More >

Displaying 1-10 on page 1 of 1. Per Page