Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    PCB CT Image Element Segmentation Model Optimizing the Semantic Perception of Connectivity Relationship

    Chen Chen, Kai Qiao, Jie Yang, Jian Chen, Bin Yan*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2629-2642, 2024, DOI:10.32604/cmc.2024.056038 - 18 November 2024

    Abstract Computed Tomography (CT) is a commonly used technology in Printed Circuit Boards (PCB) non-destructive testing, and element segmentation of CT images is a key subsequent step. With the development of deep learning, researchers began to exploit the “pre-training and fine-tuning” training process for multi-element segmentation, reducing the time spent on manual annotation. However, the existing element segmentation model only focuses on the overall accuracy at the pixel level, ignoring whether the element connectivity relationship can be correctly identified. To this end, this paper proposes a PCB CT image element segmentation model optimizing the semantic perception… More >

  • Open Access

    ARTICLE

    An Efficient and Secure Privacy-Preserving Federated Learning Framework Based on Multiplicative Double Privacy Masking

    Cong Shen1,*, Wei Zhang1,2,*, Tanping Zhou1,2, Yiming Zhang1, Lingling Zhang3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4729-4748, 2024, DOI:10.32604/cmc.2024.054434 - 12 September 2024

    Abstract With the increasing awareness of privacy protection and the improvement of relevant laws, federal learning has gradually become a new choice for cross-agency and cross-device machine learning. In order to solve the problems of privacy leakage, high computational overhead and high traffic in some federated learning schemes, this paper proposes a multiplicative double privacy mask algorithm which is convenient for homomorphic addition aggregation. The combination of homomorphic encryption and secret sharing ensures that the server cannot compromise user privacy from the private gradient uploaded by the participants. At the same time, the proposed TQRR (Top-Q-Random-R) More >

  • Open Access

    ARTICLE

    Masked Autoencoders as Single Object Tracking Learners

    Chunjuan Bo1,*, Xin Chen2, Junxing Zhang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1105-1122, 2024, DOI:10.32604/cmc.2024.052329 - 18 July 2024

    Abstract Significant advancements have been witnessed in visual tracking applications leveraging ViT in recent years, mainly due to the formidable modeling capabilities of Vision Transformer (ViT). However, the strong performance of such trackers heavily relies on ViT models pretrained for long periods, limiting more flexible model designs for tracking tasks. To address this issue, we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders, called TrackMAE. During pretraining, we employ two shared-parameter ViTs, serving as the appearance encoder and motion encoder, respectively. The appearance encoder encodes randomly masked image data,… More >

  • Open Access

    ARTICLE

    MCIF-Transformer Mask RCNN: Multi-Branch Cross-Scale Interactive Feature Fusion Transformer Model for PET/CT Lung Tumor Instance Segmentation

    Huiling Lu1,*, Tao Zhou2,3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4371-4393, 2024, DOI:10.32604/cmc.2024.047827 - 20 June 2024

    Abstract The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis. However, in PET/CT (Positron Emission Tomography/Computed Tomography) lung images, the lesion shapes are complex, the edges are blurred, and the sample numbers are unbalanced. To solve these problems, this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model (MCIF-Transformer Mask RCNN) for PET/CT lung tumor instance segmentation, The main innovative works of this paper are as follows: Firstly, the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images. The pixel dependence relationship… More >

  • Open Access

    ARTICLE

    Image Segmentation-P300 Selector: A Brain–Computer Interface System for Target Selection

    Hang Sun, Changsheng Li*, He Zhang

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2505-2522, 2024, DOI:10.32604/cmc.2024.049898 - 15 May 2024

    Abstract Brain–computer interface (BCI) systems, such as the P300 speller, enable patients to express intentions without necessitating extensive training. However, the complexity of operational instructions and the slow pace of character spelling pose challenges for some patients. In this paper, an image segmentation P300 selector based on YOLOv7-mask and DeepSORT is proposed. The proposed system utilizes a camera to capture real-world objects for classification and tracking. By applying predefined stimulation rules and object-specific masks, the proposed system triggers stimuli associated with the objects displayed on the screen, inducing the generation of P300 signals in the patient’s… More >

  • Open Access

    ARTICLE

    Side-Channel Leakage Analysis of Inner Product Masking

    Yuyuan Li1,2, Lang Li1,2,*, Yu Ou1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1245-1262, 2024, DOI:10.32604/cmc.2024.049882 - 25 April 2024

    Abstract The Inner Product Masking (IPM) scheme has been shown to provide higher theoretical security guarantees than the Boolean Masking (BM). This scheme aims to increase the algebraic complexity of the coding to achieve a higher level of security. Some previous work unfolds when certain (adversarial and implementation) conditions are met, and we seek to complement these investigations by understanding what happens when these conditions deviate from their expected behaviour. In this paper, we investigate the security characteristics of IPM under different conditions. In adversarial condition, the security properties of first-order IPMs obtained through parametric characterization More >

  • Open Access

    ARTICLE

    Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images

    Supeng Yu1, Fen Huang1,*, Chengcheng Fan2,3,4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 549-562, 2024, DOI:10.32604/cmc.2024.048608 - 25 April 2024

    Abstract Significant advancements have been achieved in road surface extraction based on high-resolution remote sensing image processing. Most current methods rely on fully supervised learning, which necessitates enormous human effort to label the image. Within this field, other research endeavors utilize weakly supervised methods. These approaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such as scribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised and edge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equipped with a distinct decoder module dedicated… More >

  • Open Access

    ARTICLE

    Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network

    Zihao Song, Yan Zhou*, Wei Cheng, Futai Liang, Chenhao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3349-3376, 2024, DOI:10.32604/cmc.2024.047034 - 26 March 2024

    Abstract The frequent missing values in radar-derived time-series tracks of aerial targets (RTT-AT) lead to significant challenges in subsequent data-driven tasks. However, the majority of imputation research focuses on random missing (RM) that differs significantly from common missing patterns of RTT-AT. The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation. Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss. In this paper, a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.… More >

  • Open Access

    ARTICLE

    TEAM: Transformer Encoder Attention Module for Video Classification

    Hae Sung Park1, Yong Suk Choi2,*

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 451-477, 2024, DOI:10.32604/csse.2023.043245 - 19 March 2024

    Abstract Much like humans focus solely on object movement to understand actions, directing a deep learning model’s attention to the core contexts within videos is crucial for improving video comprehension. In the recent study, Video Masked Auto-Encoder (VideoMAE) employs a pre-training approach with a high ratio of tube masking and reconstruction, effectively mitigating spatial bias due to temporal redundancy in full video frames. This steers the model’s focus toward detailed temporal contexts. However, as the VideoMAE still relies on full video frames during the action recognition stage, it may exhibit a progressive shift in attention towards… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Mask Identification System Using ResNet Transfer Learning Architecture

    Arpit Jain1, Nageswara Rao Moparthi1, A. Swathi2, Yogesh Kumar Sharma1, Nitin Mittal3, Ahmed Alhussen4, Zamil S. Alzamil5,*, MohdAnul Haq5

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 341-362, 2024, DOI:10.32604/csse.2023.036973 - 19 March 2024

    Abstract Recently, the coronavirus disease 2019 has shown excellent attention in the global community regarding health and the economy. World Health Organization (WHO) and many others advised controlling Corona Virus Disease in 2019. The limited treatment resources, medical resources, and unawareness of immunity is an essential horizon to unfold. Among all resources, wearing a mask is the primary non-pharmaceutical intervention to stop the spreading of the virus caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) droplets. All countries made masks mandatory to prevent infection. For such enforcement, automatic and effective face detection systems are crucial.… More >

Displaying 1-10 on page 1 of 59. Per Page