Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Rolling Bearing Fault Diagnosis Based on MTF Encoding and CBAM-LCNN Mechanism

    Wei Liu1, Sen Liu2,3,*, Yinchao He2, Jiaojiao Wang1, Yu Gu1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4863-4880, 2025, DOI:10.32604/cmc.2025.059295 - 06 March 2025

    Abstract To address the issues of slow diagnostic speed, low accuracy, and poor generalization performance in traditional rolling bearing fault diagnosis methods, we propose a rolling bearing fault diagnosis method based on Markov Transition Field (MTF) image encoding combined with a lightweight convolutional neural network that integrates a Convolutional Block Attention Module (CBAM-LCNN). Specifically, we first use the Markov Transition Field to convert the original one-dimensional vibration signals of rolling bearings into two-dimensional images. Then, we construct a lightweight convolutional neural network incorporating the convolutional attention module (CBAM-LCNN). Finally, the two-dimensional images obtained from MTF mapping… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on the Markov Transition Field and SE-IShufflenetV2 Model

    Chaozhi Cai*, Tiexin Xu, Jianhua Ren, Yingfang Xue

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 125-144, 2025, DOI:10.32604/sdhm.2024.052813 - 15 November 2024

    Abstract A bearing fault diagnosis method based on the Markov transition field (MTF) and SEnet (SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions, low fault diagnosis accuracy, and poor generalization of rolling bearing. Firstly, MTF is used to encode one-dimensional time series vibration signals and convert them into time-dependent and unique two-dimensional feature images. Then, the generated two-dimensional dataset is fed into the SE-IShufflenetV2 model for training to achieve fault feature extraction and classification. This paper selects the bearing fault datasets from Case Western Reserve University and Paderborn University… More >

  • Open Access

    ARTICLE

    MUS Model: A Deep Learning-Based Architecture for IoT Intrusion Detection

    Yu Yan1, Yu Yang1,*, Shen Fang1, Minna Gao2, Yiding Chen1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 875-896, 2024, DOI:10.32604/cmc.2024.051685 - 18 July 2024

    Abstract In the face of the effective popularity of the Internet of Things (IoT), but the frequent occurrence of cybersecurity incidents, various cybersecurity protection means have been proposed and applied. Among them, Intrusion Detection System (IDS) has been proven to be stable and efficient. However, traditional intrusion detection methods have shortcomings such as low detection accuracy and inability to effectively identify malicious attacks. To address the above problems, this paper fully considers the superiority of deep learning models in processing high-dimensional data, and reasonable data type conversion methods can extract deep features and detect classification using… More >

Displaying 1-10 on page 1 of 3. Per Page