Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Constrained Local Neighborhood Approach for Efficient Markov Blanket Discovery in Undirected Independent Graphs

    Kun Liu1,2, Peiran Li3, Yu Zhang1,*, Jia Ren1, Ming Li4, Xianyu Wang2, Cong Li2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2535-2555, 2024, DOI:10.32604/cmc.2024.052166 - 15 August 2024

    Abstract When learning the structure of a Bayesian network, the search space expands significantly as the network size and the number of nodes increase, leading to a noticeable decrease in algorithm efficiency. Traditional constraint-based methods typically rely on the results of conditional independence tests. However, excessive reliance on these test results can lead to a series of problems, including increased computational complexity and inaccurate results, especially when dealing with large-scale networks where performance bottlenecks are particularly evident. To overcome these challenges, we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected… More >

  • Open Access

    ARTICLE

    Online Markov Blanket Learning with Group Structure

    Bo Li1, Zhaolong Ling1, Yiwen Zhang1,*, Yong Zhou1, Yimin Hu2, Haifeng Ling3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 33-48, 2023, DOI:10.32604/iasc.2023.037267 - 29 April 2023

    Abstract Learning the Markov blanket (MB) of a given variable has received increasing attention in recent years because the MB of a variable predicts its local causal relationship with other variables. Online MB Learning can learn MB for a given variable on the fly. However, in some application scenarios, such as image analysis and spam filtering, features may arrive by groups. Existing online MB learning algorithms evaluate features individually, ignoring group structure. Motivated by this, we formulate the group MB learning with streaming features problem, and propose an Online MB learning with Group Structure algorithm, OMBGS, More >

Displaying 1-10 on page 1 of 2. Per Page