Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    A GAN-EfficientNet-Based Traceability Method for Malicious Code Variant Families

    Li Li*, Qing Zhang, Youran Kong

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 801-818, 2024, DOI:10.32604/cmc.2024.051916 - 18 July 2024

    Abstract Due to the diversity and unpredictability of changes in malicious code, studying the traceability of variant families remains challenging. In this paper, we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants. This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images. The method includes a lightweight classifier and a simulator. The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile, embedded, and other devices. The simulator utilizes… More >

  • Open Access

    ARTICLE

    A New Malicious Code Classification Method for the Security of Financial Software

    Xiaonan Li1,2, Qiang Wang1, Conglai Fan2,3, Wei Zhan1, Mingliang Zhang4,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 773-792, 2024, DOI:10.32604/csse.2024.039849 - 20 May 2024

    Abstract The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software. The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients. Nevertheless, present detection models encounter limitations in their ability to identify malevolent code and its variations, all while encompassing a multitude of parameters. To overcome these obstacles, we introduce a lean model for classifying families of malevolent code, formulated on Ghost-DenseNet-SE. This model integrates the Ghost module, DenseNet, and the squeeze-and-excitation (SE) channel domain attention mechanism. It substitutes the… More >

  • Open Access

    ARTICLE

    Malware Attacks Detection in IoT Using Recurrent Neural Network (RNN)

    Abeer Abdullah Alsadhan1, Abdullah A. Al-Atawi2, Hanen karamti3, Abid Jameel4, Islam Zada5, Tan N. Nguyen6,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 135-155, 2024, DOI:10.32604/iasc.2023.041130 - 21 May 2024

    Abstract IoT (Internet of Things) devices are being used more and more in a variety of businesses and for a variety of tasks, such as environmental data collection in both civilian and military situations. They are a desirable attack target for malware intended to infect specific IoT devices due to their growing use in a variety of applications and their increasing computational and processing power. In this study, we investigate the possibility of detecting IoT malware using recurrent neural networks (RNNs). RNN is used in the proposed method to investigate the execution operation codes of ARM-based More >

  • Open Access

    ARTICLE

    Lightweight Malicious Code Classification Method Based on Improved SqueezeNet

    Li Li*, Youran Kong, Qing Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 551-567, 2024, DOI:10.32604/cmc.2023.045512 - 30 January 2024

    Abstract With the growth of the Internet, more and more business is being done online, for example, online offices, online education and so on. While this makes people’s lives more convenient, it also increases the risk of the network being attacked by malicious code. Therefore, it is important to identify malicious codes on computer systems efficiently. However, most of the existing malicious code detection methods have two problems: (1) The ability of the model to extract features is weak, resulting in poor model performance. (2) The large scale of model data leads to difficulties deploying on… More >

  • Open Access

    ARTICLE

    Proof of Activity Protocol for IoMT Data Security

    R. Rajadevi1, K. Venkatachalam2, Mehedi Masud3, Mohammed A. AlZain4, Mohamed Abouhawwash5,6,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 339-350, 2023, DOI:10.32604/csse.2023.024537 - 01 June 2022

    Abstract The Internet of Medical Things (IoMT) is an online device that senses and transmits medical data from users to physicians within a time interval. In, recent years, IoMT has rapidly grown in the medical field to provide healthcare services without physical appearance. With the use of sensors, IoMT applications are used in healthcare management. In such applications, one of the most important factors is data security, given that its transmission over the network may cause obtrusion. For data security in IoMT systems, blockchain is used due to its numerous blocks for secure data storage. In… More >

  • Open Access

    ARTICLE

    Impact Analysis of Resilience Against Malicious Code Attacks via Emails

    Chulwon Lee1, Kyungho Lee2,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4803-4816, 2022, DOI:10.32604/cmc.2022.025310 - 21 April 2022

    Abstract The damage caused by malicious software is increasing owing to the COVID-19 pandemic, such as ransomware attacks on information technology and operational technology systems based on corporate networks and social infrastructures and spear-phishing attacks on business or research institutes. Recently, several studies have been conducted to prevent further phishing emails in the workplace because malware attacks employ emails as the primary means of penetration. However, according to the latest research, there appears to be a limitation in blocking email spoofing through advanced blocking systems such as spam email filtering solutions and advanced persistent threat systems.… More >

Displaying 1-10 on page 1 of 6. Per Page