Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Enhancing Detection of Malicious URLs Using Boosting and Lexical Features

    Mohammad Atrees*, Ashraf Ahmad, Firas Alghanim

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1405-1422, 2022, DOI:10.32604/iasc.2022.020229 - 09 October 2021

    Abstract A malicious URL is a link that is created to spread spams, phishing, malware, ransomware, spyware, etc. A user may download malware that can adversely affect the computer by clicking on an infected URL, or might be convinced to provide confidential information to a fraudulent website causing serious losses. These threats must be identified and handled in a decent time and in an effective way. Detection is traditionally done through the blacklist usage method, which relies on keyword matching with previously known malicious domain names stored in a repository. This method is fast and easy… More >

  • Open Access

    ARTICLE

    Adversarial Attacks on Featureless Deep Learning Malicious URLs Detection

    Bader Rasheed1, Adil Khan1, S. M. Ahsan Kazmi2, Rasheed Hussain2, Md. Jalil Piran3,*, Doug Young Suh4

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 921-939, 2021, DOI:10.32604/cmc.2021.015452 - 22 March 2021

    Abstract Detecting malicious Uniform Resource Locators (URLs) is crucially important to prevent attackers from committing cybercrimes. Recent researches have investigated the role of machine learning (ML) models to detect malicious URLs. By using ML algorithms, first, the features of URLs are extracted, and then different ML models are trained. The limitation of this approach is that it requires manual feature engineering and it does not consider the sequential patterns in the URL. Therefore, deep learning (DL) models are used to solve these issues since they are able to perform featureless detection. Furthermore, DL models give better… More >

  • Open Access

    ARTICLE

    A Convolution-Based System for Malicious URLs Detection

    Chaochao Luo1, Shen Su2, *, Yanbin Sun2, Qingji Tan3, Meng Han4, Zhihong Tian2, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 399-411, 2020, DOI:10.32604/cmc.2020.06507

    Abstract Since the web service is essential in daily lives, cyber security becomes more and more important in this digital world. Malicious Uniform Resource Locator (URL) is a common and serious threat to cybersecurity. It hosts unsolicited content and lure unsuspecting users to become victim of scams, such as theft of private information, monetary loss, and malware installation. Thus, it is imperative to detect such threats. However, traditional approaches for malicious URLs detection that based on the blacklists are easy to be bypassed and lack the ability to detect newly generated malicious URLs. In this paper, More >

Displaying 1-10 on page 1 of 3. Per Page