Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Magneto-Electro-Elastic Analysis of Doubly-Curved Shells: Higher-Order Equivalent Layer-Wise Formulation

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1767-1838, 2025, DOI:10.32604/cmes.2024.058842 - 27 January 2025

    Abstract Recent engineering applications increasingly adopt smart materials, whose mechanical responses are sensitive to magnetic and electric fields. In this context, new and computationally efficient modeling strategies are essential to predict the multiphysic behavior of advanced structures accurately. Therefore, the manuscript presents a higher-order formulation for the static analysis of laminated anisotropic magneto-electro-elastic doubly-curved shell structures. The fundamental relations account for the full coupling between the electric field, magnetic field, and mechanical elasticity. The configuration variables are expanded along the thickness direction using a generalized formulation based on the Equivalent Layer-Wise approach. Higher-order polynomials are selected,… More >

  • Open Access

    ARTICLE

    Boundary Element Method for Magneto Electro Elastic Laminates

    A. Milazzo1, I. Benedetti2, C. Orlando3

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.1, pp. 17-30, 2006, DOI:10.3970/cmes.2006.015.017

    Abstract A boundary integral formulation and its numerical implementation are presented for the analysis of magneto electro elastic media. The problem is formulated by using a suitable set of generalized variables, namely the generalized displacements, which are comprised of mechanical displacements and electric and magnetic scalar potentials, and generalized tractions, that is mechanical tractions, electric displacement and magnetic induction. The governing boundary integral equation is obtained by generalizing the reciprocity theorem to the magneto electro elasticity. The fundamental solutions are calculated through a modified Lekhnitskii's approach, reformulated in terms of generalized magneto-electro-elastic displacements. To assess the More >

Displaying 1-10 on page 1 of 2. Per Page