Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    A novel mutation in ROR2 led to the loss of function of ROR2 and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells (BMSCs)

    WENQI CHEN1,#, XIAOYANG CHU2,#, YANG ZENG3,#, YOUSHENG YAN4, YIPENG WANG4, DONGLAN SUN1, DONGLIANG ZHANG5, JING ZHANG1,*, KAI YANG4,*

    BIOCELL, Vol.47, No.7, pp. 1561-1569, 2023, DOI:10.32604/biocell.2023.028851 - 21 June 2023

    Abstract Background: Receptor tyrosine kinase-like orphan receptor 2 (ROR2) has a vital role in osteogenesis. However, the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended. A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome (ARRS). This study attempted to explore the impact of the ROR2: c.904C>T variant specifically on the osteogenic differentiation of BMSCs. Methods: Coimmunoprecipitation (CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a. Double-immunofluorescence staining was used for determining the expressions and co-localization… More > Graphic Abstract

    A novel mutation in <i>ROR2</i> led to the loss of function of <i>ROR2</i> and inhibited the osteogenic differentiation capability of bone marrow mesenchymal stem cells (BMSCs)

  • Open Access

    ARTICLE

    Immunoregulatory effects of human amniotic mesenchymal stem cells and their exosomes on human peripheral blood mononuclear cells

    XIN TIAN, XIANGLING HE*, SHUQIN QIAN, RUNYING ZOU, KEKE CHEN, CHENGGUANG ZHU, ZEXI YIN

    BIOCELL, Vol.47, No.5, pp. 1085-1093, 2023, DOI:10.32604/biocell.2023.027090 - 10 April 2023

    Abstract Background: The immunomodulatory effects of mesenchymal stem cells (MSCs) and their exosomes have been receiving increasing attention. This study investigated the immunoregulatory effects of human amniotic mesenchymal stem cells (hAMSCs) and their exosomes on phytohemagglutinin (PHA)-induced peripheral blood mononuclear cells (PBMCs). Methods: The hAMSCs used in the experiment were identified by light microscopy and flow cytometry, and the differentiation ability of the cells was determined by Oil Red O and Alizarin Red staining. The expressions of transforming growth factor (TGF)-β, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2 (COX-2), hepatocyte growth factor (HGF), and interleukin (IL)-6 were detected by quantitative… More >

  • Open Access

    REVIEW

    Therapeutic application of mesenchymal stem cells-derived extracellular vesicles in colorectal cancer

    MOHADESEH NEMATI1, YOUSEF RASMI1, JAFAR REZAIE2,*

    BIOCELL, Vol.47, No.3, pp. 455-464, 2023, DOI:10.32604/biocell.2023.025603 - 03 January 2023

    Abstract Colorectal cancer (CRC) is the third most common cancer and the leading cause of cancer death globally. Resistance to therapy is a challenge for CRC treatment. Mesenchymal stem cells (MSCs) have become one of the furthermost effective approaches for tumor treatment due to their specific feature; however, their therapeutic function is controversial. Recently, extracellular vesicles (EVs) derived from MSCs (MSCs-EVs) have attracted extensive research attention due to their promising role in CRC treatment. EVs are cell-derived vesicles that transfer different biomolecules between cells, contributing to intracellular communication. MSCs-EVs can suppress CRC by delivering therapeutic agents… More >

  • Open Access

    ARTICLE

    The antioxidant trolox inhibits aging and enhances prostaglandin E-2 secretion in mesenchymal stem cells

    XIAOXU ZHANG1,2, LIN ZHANG1, LIN DU3, HUIYAN SUN4, XIA ZHAO2, YANG SUN1, WEI WANG2,*, LISHENG WANG1,3,*

    BIOCELL, Vol.47, No.2, pp. 385-392, 2023, DOI:10.32604/biocell.2023.025203 - 18 November 2022

    Abstract Mesenchymal stem cells (MSCs) have been widely used in regenerative medicine and clinical therapy due to their capabilities of proliferation, differentiation, and immune regulation. However, during in vitro expansion, MSCs are prone to aging, which largely limits their application. Prostaglandin E-2 (PGE-2) is a key effector secreted by MSCs to exert immunomodulatory effects. By screening the compound library for PGE-2 secretion, the antioxidant trolox was verified as a stimulator of MSCs to secrete PGE-2. The effect of antioxidant trolox on biological characteristics of MSCS, including aging, proliferation, and gene expression, was examined. The results demonstrated that More >

  • Open Access

    VIEWPOINT

    Production of mesenchymal stem cell derived-secretome as cell-free regenerative therapy and immunomodulation: A biomanufacturing perspective

    FUAD GANDHI TORIZAL1,2,*, FRANSISCUS FIANO ANTHONY KERANS3, ANNISA KHUMAIRA1

    BIOCELL, Vol.46, No.8, pp. 1885-1891, 2022, DOI:10.32604/biocell.2022.019591 - 22 April 2022

    Abstract The potential of mesenchymal stem cells (MSCs) in regenerative medicine has been largely known due to their capability to induce tissue regeneration in vivo with minimum inflammation during implantation. This adult stem cell type exhibit unique features of tissue repair mechanism and immune modulation mediated by their secreted factors, called secretome. Recently, the utilization of secretome as a therapeutic agent provided new insight into cell-free therapy. Nevertheless, a sufficient amount of secretome is necessary to realize their applications for translational medicine which required a proper biomanufacturing process. Several factors related to their production need to More >

  • Open Access

    ARTICLE

    Long non-coding RNA MIR22HG inhibits the adipogenesis of human bone marrow mesenchymal stem cells with the involvement of Wnt/β-catenin pathway

    CHANYUAN JIN1,4,#, ZIYAO ZHUANG2,4,#, LINGFEI JIA3,4,*, YUNFEI ZHENG2,4,*

    BIOCELL, Vol.46, No.7, pp. 1717-1724, 2022, DOI:10.32604/biocell.2022.018706 - 17 March 2022

    Abstract Osteoporosis is a frequently occurring bone remodeling disorder worldwide with one characteristic being decreasing bone mineral density and a predisposition to bone fracture, which diminishes patients’ quality of life. Several studies showed that imbalance between the osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) took part in the development of osteoporosis. In previous study, we found MIR22HG regulated the osteogenesis of human BMSCs positively. In this study, we found that MIR22HG was decreased during the adipogenesis of human BMSCs and exerted negative effects on adipogenesis with the involvement of Wnt/β-catenin signaling pathway both in More >

  • Open Access

    ARTICLE

    Cyclic biaxial tensile strain enhances osteogenic differentiation in rat bone marrow-derived mesenchymal stem cells via activating ERα-Wnt3a/β-catenin pathway

    MIN TANG1,#, XUELING HE1,2,#, XINGHONG YAO1, JIRUI WEN1, MINGYUE BAO1, LIANG LI1,*

    BIOCELL, Vol.46, No.6, pp. 1465-1472, 2022, DOI:10.32604/biocell.2022.018967 - 07 February 2022

    Abstract The present study was designed to investigate the role of estrogen receptor α (ERα) in biaxial tensile strain (BTS) regulated osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). rBMSCs were derived from rats and overexpressed ERα. The rBMSCs were subjected to BTS at 1 Hz with a strain of 2% for 4 h per day, 3 days, with or without ERα inhibitor ICI 182,780 (ICI). Then, bone mineralization was performed by Alizarin Red Staining. The markers of osteogenic differentiation and downstream Wnt3a/β-catenin signaling were detected by western blotting. Results showed that BTS enhanced More >

  • Open Access

    VIEWPOINT

    Applications of scaffolds: Tools for enhancing the immunomodulation of mesenchymal stromal cells

    OK-HYEON KIM1,2,#, EUN RAN KIM3,#, JUN HYUNG PARK2, HYUN JUNG LEE1,2,*

    BIOCELL, Vol.46, No.6, pp. 1439-1443, 2022, DOI:10.32604/biocell.2022.018921 - 07 February 2022

    Abstract Exogenously delivered mesenchymal stromal cells (MSCs) are therapeutically beneficial owing to their paracrine effect; they secrete various cytokines, nucleic acids, and proteins. Multiple bioengineering techniques can help MSC cultures to release secretomes by providing stem cell niche-like conditions (both structurally and functionally). Various scaffolds mimic the natural extracellular matrix (ECM) using both natural and synthetic polymers, providing favorable environments for MSC proliferation and differentiation. Depending on material properties, either topographically or elastically structured scaffolds can be fabricated. Three-dimensional scaffolds have tunable substrate rigidities and structures, aiding MSC cultivation. Decellularized ECM-derived hydrogels are similar to the More >

  • Open Access

    VIEWPOINT

    MSCs derived extracellular vesicles as a therapeutic paragon for neurodegenerative disorders: A viewpoint

    YASHVI SHARMA1, SHARDA RAY2, SUJATA MOHANTY1,*

    BIOCELL, Vol.46, No.6, pp. 1435-1438, 2022, DOI:10.32604/biocell.2022.018612 - 07 February 2022

    Abstract Neurodegenerative disorders are a vicious woe to the public health and wellness. Uncertainty in their underlying causes, lack of effective biomarkers for their early detection, existence of only supportive therapy, and their ever rising incidence creates an unmatched need for targeted therapies. Mesenchymal Stem Cells (MSCs) have found to be promising candidates for regenerative and remedial therapy in neurodegenerative disorders, however several biological risks and practical issues impede in their translational utility. Deriving from MSCs are certain Extracellular Vesicles (EVs), which aid in the paracrine action of MSCs and have lately gained the scientific interest More >

  • Open Access

    VIEWPOINT

    MSCs-exosomes in regeneration medicine: Current evidence and future perspectives

    BENSHUAI YOU1, HUI QIAN1,2,*

    BIOCELL, Vol.46, No.6, pp. 1459-1463, 2022, DOI:10.32604/biocell.2022.018378 - 07 February 2022

    Abstract Exosomes, especially from mesenchymal stem cells, have attracted extensive attention in regeneration medicine. Mesenchymal stem cells derived exosomes (MSCs-exosomes) have shown anti-inflammatory, anti-oxidant, anti-apoptosis and tissue regeneration effects in a variety of tissue injury repair models. MSCs-exosomes hold many excellent properties such as low immunogenicity, biocompatibility, and targeting capability. With the in-depth study on the generation and function of exosomes, MSCs-exosomes are considered to be the bright stars in the field of regenerative medicine. However, there are still many obstacles to overcome in terms of exosomes isolation, clinical trials and safety evaluation. In this article, More >

Displaying 1-10 on page 1 of 17. Per Page