Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Modular System of Cascaded Converters Based on Model Predictive Control

    Chunxue Wen, Yaoquan Wei*, Peng Wang, Jianlin Li, Jinghua Zhou, Qingyun Li

    Energy Engineering, Vol.121, No.11, pp. 3241-3261, 2024, DOI:10.32604/ee.2024.051810 - 21 October 2024

    Abstract A modular system of cascaded converters based on model predictive control (MPC) is proposed to meet the application requirements of multiple voltage levels and electrical isolation in renewable energy generation systems. The system consists of a Buck/Boost + CLLLC cascaded converter as a submodule, which is combined in series and parallel on the input and output sides to achieve direct-current (DC) voltage transformation, bidirectional energy flow, and electrical isolation. The CLLLC converter operates in DC transformer mode in the submodule, while the Buck/Boost converter participates in voltage regulation. This article establishes a suitable mathematical model More >

  • Open Access

    ARTICLE

    Enhancing Safety in Autonomous Vehicle Navigation: An Optimized Path Planning Approach Leveraging Model Predictive Control

    Shih-Lin Lin*, Bo-Chen Lin

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3555-3572, 2024, DOI:10.32604/cmc.2024.055456 - 12 September 2024

    Abstract This paper explores the application of Model Predictive Control (MPC) to enhance safety and efficiency in autonomous vehicle (AV) navigation through optimized path planning. The evolution of AV technology has progressed rapidly, moving from basic driver-assistance systems (Level 1) to fully autonomous capabilities (Level 5). Central to this advancement are two key functionalities: Lane-Change Maneuvers (LCM) and Adaptive Cruise Control (ACC). In this study, a detailed simulation environment is created to replicate the road network between Nantun and Wuri on National Freeway No. 1 in Taiwan. The MPC controller is deployed to optimize vehicle trajectories,… More >

  • Open Access

    PROCEEDINGS

    Direct FE2 Method For Concurrent Multilevel Modeling of Piezoelectric Structures

    Leilei Chen2,3, Haozhi Li3,4, Lu Meng5, Pan Chen3, Pei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.010584

    Abstract In this paper, a Direct FE2 method is proposed to simulate the electromechanical coupling problem of inhomogeneous materials. The theoretical foundation for the proposed method, downscaling and upscaling principles, is the same as that of the FE2 method. The two-level simulation in the Direct FE2 method may be addressed in an integrative framework where macroscopic and microscopic degrees of freedom (DOFs) are related by multipoint constraints (MPCs) [1]. This critical characteristic permits simple implementation in commercial FE software, eliminating the necessity for recurrent data transfer between two scales [2-4]. The capabilities of Direct FE2 are validated using More >

  • Open Access

    ARTICLE

    MLD-MPC Approach for Three-Tank Hybrid Benchmark Problem

    Hanen Yaakoubi1, Hegazy Rezk2, Mujahed Al-Dhaifallah3,4,*, Joseph Haggège1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3657-3675, 2023, DOI:10.32604/cmc.2023.034929 - 31 March 2023

    Abstract The present paper aims at validating a Model Predictive Control (MPC), based on the Mixed Logical Dynamical (MLD) model, for Hybrid Dynamic Systems (HDSs) that explicitly involve continuous dynamics and discrete events. The proposed benchmark system is a three-tank process, which is a typical case study of HDSs. The MLD-MPC controller is applied to the level control of the considered tank system. The study is initially focused on the MLD approach that allows consideration of the interacting continuous dynamics with discrete events and includes the operating constraints. This feature of MLD modeling is very advantageous… More >

  • Open Access

    ARTICLE

    Effective Energy Management Scheme by IMPC

    Smarajit Ghosh*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 181-197, 2023, DOI:10.32604/iasc.2023.026496 - 06 June 2022

    Abstract The primary purpose of the Energy Management Scheme (EMS) is to monitor the energy fluctuations present in the load profile. In this paper, the improved model predictive controller is adopted for the EMS in the power system. Emperor Penguin Optimization (EPO) algorithm optimized Artificial Neural Network (ANN) with Model Predictive Control (MPC) scheme for accurate prediction of load and power forecasting at the time of pre-optimizing EMS is presented. For the power generation, Renewable Energy Sources (RES) such as photo voltaic (PV) and wind turbine (WT) are utilized along with that the fuel cell is… More >

  • Open Access

    ARTICLE

    Energy Efficient Thermal Comfort Control for Residential Building Based on Nonlinear EMPC

    Xucheng Chang1,*, Bing Kong2, Yong Li1, Gaofeng Ren1, Chao Zhang1, Zhenghe Wang1

    Energy Engineering, Vol.119, No.5, pp. 1941-1966, 2022, DOI:10.32604/ee.2022.020698 - 21 July 2022

    Abstract For purpose of achieving the desired thermal comfort level and reducing the economic cost of maintaining the thermal comfort of green residential building, an energy efficient thermal comfort control strategy based on economic model predictive control (EMPC) for green residential buildings which adopts household heat metering is presented. Firstly, the nonlinear thermal comfort model of heating room is analyzed and obtained. A practical nonlinear thermal comfort prediction model is obtained by using an approximation method. Then, the economic cost function and optimization problem of energy-saving under the necessary thermal comfort requirements are constructed to realize… More >

  • Open Access

    ARTICLE

    FCS-MPC Strategy for PV Grid-Connected Inverter Based on MLD Model

    Xiaojuan Lu, Qingbo Zhang*

    Energy Engineering, Vol.118, No.6, pp. 1729-1740, 2021, DOI:10.32604/EE.2021.014938 - 10 September 2021

    Abstract In the process of grid-connected photovoltaic power generation, there are high requirements for the quality of the power that the inverter breaks into the grid. In this work, to improve the power quality of the grid-connected inverter into the grid, and the output of the system can meet the grid-connected requirements more quickly and accurately, we exhibit an approach toward establishing a mixed logical dynamical (MLD) model where logic variables were introduced to switch dynamics of the single-phase photovoltaic inverters. Besides, based on the model, our recent efforts in studying the finite control set model More >

Displaying 1-10 on page 1 of 7. Per Page