Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (115)
  • Open Access

    REVIEW

    Recent Efforts on the Compressive and Tensile Strength Behavior of Thermoplastic-Based Recycled Aggregate Concrete toward Sustainability in Construction Materials

    Mahmoud Alhashash1, Abdullah Alariyan2, Ameen Mokhles Youns3, Favzi Ghreivati4, Ahed Habib5,*, Maan Habib6

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070194 - 08 January 2026

    Abstract Concrete production often relies on natural aggregates, which can lead to resource depletion and environmental harm. In addition, improper disposal of thermoplastic waste exacerbates ecological problems. Although significant attention has recently been given to recycling various waste materials into concrete, studies specifically addressing thermoplastic recycled aggregates are still trending. This underscores the need to comprehensively review existing literature, identify research trends, and recognize gaps in understanding the mechanical performance of thermoplastic-based recycled aggregate concrete. Accordingly, this review summarizes recent investigations focused on the mechanical properties of thermoplastic-based recycled aggregate concrete, emphasizing aspects such as compressive… More >

  • Open Access

    ARTICLE

    An Improved Variant of Multi-Population Cooperative Constrained Multi-Objective Optimization (MCCMO) for Multi-Objective Optimization Problem

    Muhammad Waqar Khan1,*, Adnan Ahmed Siddiqui1, Syed Sajjad Hussain Rizvi2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070858 - 09 December 2025

    Abstract The multi-objective optimization problems, especially in constrained environments such as power distribution planning, demand robust strategies for discovering effective solutions. This work presents the improved variant of the Multi-population Cooperative Constrained Multi-Objective Optimization (MCCMO) Algorithm, termed Adaptive Diversity Preservation (ADP). This enhancement is primarily focused on the improvement of constraint handling strategies, local search integration, hybrid selection approaches, and adaptive parameter control. The improved variant was experimented on with the RWMOP50 power distribution system planning benchmark. As per the findings, the improved variant outperformed the original MCCMO across the eleven performance metrics, particularly in terms… More >

  • Open Access

    PROCEEDINGS

    A New Analytical Method for Strength Prediction of Injection Molded Fiber Reinforced Thermoplastics Based on Progressive Delamination Failure Principle

    Dayong Huang1,2,*, Wenjun Wang1,2, Xiaofu Tang1,2, Pengfei Zhu3, Xianqiong Zhao3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012063

    Abstract Accurate prediction for the tensile properties (tensile modulus and strength) of injection molded fiber-reinforced thermoplastics (IMFT) plays an important role in the design of structures made with such composites. Based on the Laminate analogy approach (LAA), a unified distribution function (UDF) of tensile properties is derived by introducing the assumption that the fiber length distribution (FLD) and fiber orientation distribution (FOD) are independent of each other. The UDF of tensile properties is simplified by introducing the modified monotonic functions of fiber length and orientation factors (λL and λO). Compared with the tensile modulus and strength… More >

  • Open Access

    PROCEEDINGS

    In-Vivo Chromophore Characterization of the Human Skin

    Qiaoyun Yu, Shibin Wang*, Zhiyong Wang, Chuanwei Li, Linan Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.011080

    Abstract The concentration of chromophores in the human skin provides crucial information for non-invasive skin diagnostics, particularly in clinical and dermatological applications [1,2]. However, only a few studies have reported chromophore concentration measurements at different skin depths [3,4]. This paper introduces a method for the tomographic measurement of skin chromophore concentrations using reflectance spectra. By considering the variations in hemoglobin content at different skin depths, we developed a dual-band skin reflectance spectral model and employed a hyperspectral camera to measure the in vivo spectral reflectance of the human skin. Chromophores including oxyhemoglobin, deoxyhemoglobin, blood oxygen, and melanin… More >

  • Open Access

    ARTICLE

    Manufacturing a Biodegradable Container for Planting Plants Based on an Innovative Wood-Polymer Composite

    Ksenia Anikeeva*, Ruslan Safin

    Journal of Renewable Materials, Vol.13, No.11, pp. 2235-2252, 2025, DOI:10.32604/jrm.2025.02025-0128 - 24 November 2025

    Abstract The use of wood-polymer composites (WPC) based on a polymer matrix and wood filler is a modern, environmentally friendly direction in material science. However, untreated wood filler exhibits poor adhesion to hydrophobic polymers due to its hydrophilic lignocellulose fibers. To address this, ozone treatment is employed to enhance compatibility, reduce water absorption, and regulate biodegradation rates. This study investigates the hypothesis that ozone modification of wood filler improves adhesion to thermoplastic starch, thereby enhancing the physico-mechanical properties and controlled biodegradation of WPCs under compost conditions. A comprehensive analysis was conducted on composites containing untreated and… More >

  • Open Access

    ARTICLE

    Magnetohydrodynamic Jeffrey Nanofluid Flow across an Inclined Stretching Sheet via Porous Media with Slip Effects

    Pennelli Saila Kumari1, Shaik Mohammed Ibrahim1,*, Prathi Vijaya Kumar2, Giulio Lorenzini3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1639-1660, 2025, DOI:10.32604/fhmt.2025.069063 - 31 October 2025

    Abstract In this paper, the authors examine various slip effects on the magnetic field and thermal radiative impacts on the flow, mass and heat transfer of a Jeffrey nanofluid over a 2-dimensional inclined stretching sheet by a porous media. The offered work is modelled to be in the form of a combination of coupled highly nonlinear partial differential equations in dimensional contexts. Governing equations were obtained, dimensionless parameters were defined in terms of similarity parameters, and the solutions were obtained by the Homotopy Analysis Method (HAM). The analysis is significant as the effects of viscosity are… More >

  • Open Access

    ARTICLE

    Genomic and Functional Characterization of Thermophilic Paenibacillus sp. VCA1: A Biocontrol Agent Isolated from El Chichón Volcano Crater Lake

    Nancy Abril Martínez-López1, Betsy Anaid Peña-Ocaña2, Rodolfo García-Contreras3, Toshinari Maeda4, Reiner Rincón-Rosales1, Federico Antonio Gutiérrez-Miceli1, Víctor Manuel Ruíz-Valdiviezo1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2729-2743, 2025, DOI:10.32604/phyton.2025.068176 - 30 September 2025

    Abstract Species of the genus Paenibacillus, especially those from extreme environments that have been reported, are known for producing bioactive compounds with agricultural and biotechnological applications. In this study, we investigated the genomic and biochemical potential of Paenibacillus sp. VCA1 strain isolated from a thermophilic environment. Taxonomic identification was performed using whole genome similarity analysis, TETRA four-nucleotide frequency of occurrence analysis, ANI average nucleotide identity analysis, and gene distance analysis using digital DNA-DNA hybridization (dDDH). Functional analysis of the strain VCA1 was performed by detecting genes, enzymes, and genome subsystems involved in biocontrol and plant growth promotion,… More >

  • Open Access

    REVIEW

    A review on pathobiology of circulating tumour plasma cells: The sine qua non of poor prognosis in plasma cell neoplasms

    PRATIBHA SUKU1, AISHWARYA DASH1, ARAVIND RADHAKRISHNAN1, PANKAJ MALHOTRA2, MAN UPDESH SINGH SACHDEVA1,*

    Oncology Research, Vol.33, No.5, pp. 1055-1068, 2025, DOI:10.32604/or.2024.055154 - 18 April 2025

    Abstract Circulating plasma cells (CPCs) in patients of plasma cell neoplasm have been an area of intense research in recent decades. Circulating tumor plasma cells (CTPCs) might represent a sub-clone of tumor cells that have exited into peripheral blood as a result of the dynamic interactions between the bone marrow (BM) microenvironment and neoplastic plasma cells. Chemokine receptors like chemokine receptor 4 (CXCR4) and integrins are known to play a role in homing and migration of plasma cells (PCs). The hypoxic microenvironment in the BM niche also contributes to their circulation through various mechanisms. In addition,… More >

  • Open Access

    ARTICLE

    Research on Wind-Solar Complementarity Rate Analysis and Capacity Configuration Based on COPULA-IMOPSO

    Caifeng Wen1, Feifei Xue1,*, Hongliang Hao2, Edwin E. Nyakilla2, Ning Yang1,*, Yongsheng Wang3, Yuwen Zhang2

    Energy Engineering, Vol.122, No.4, pp. 1511-1529, 2025, DOI:10.32604/ee.2025.060810 - 31 March 2025

    Abstract This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output. It addresses the limitations of relying on a single metric for a comprehensive assessment of complementarity. To enable more accurate predictions of the optimal wind-solar ratio, a comprehensive complementarity rate is proposed, which allows for the optimization of wind-solar capacity based on this measure. Initially, the Clayton Copula function is employed to create a joint probability distribution model for wind and solar power, enabling the calculation of the comprehensive complementarity rate. Following this, a joint planning… More >

  • Open Access

    ARTICLE

    Body Temperature Programmable Shape Memory Thermoplastic Rubber

    Taoxi Wang1, Zhuo Liu1,2, Fu Jian1, Xing Shen1, Chen Wang1, Huwei Bian3, Tao Jiang3,*, Wei Min Huang4

    Journal of Polymer Materials, Vol.42, No.1, pp. 81-94, 2025, DOI:10.32604/jpm.2025.061047 - 27 March 2025

    Abstract This paper presents the development of a thermoplastic shape memory rubber that can be programmed at human body temperature for comfortable fitting applications. We hybridized commercially available thermoplastic rubber (TPR) used in the footwear industry with un-crosslinked polycaprolactone (PCL) to create two samples, namely TP6040 and TP7030. The shape memory behavior, elasticity, and thermo-mechanical response of these rubbers were systematically investigated. The experimental results demonstrated outstanding shape memory performance, with both samples achieving shape fixity ratios (Rf) and shape recovery ratios (Rr) exceeding 94%. TP6040 exhibited a fitting time of 80 s at body temperature (37°C), More >

Displaying 1-10 on page 1 of 115. Per Page