Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    PROCEEDINGS

    Aerothermoelasticity Research of Hypersonic TPS Panel using Kriging Surrogate Reduced Order Model

    Zijun Yi1, Dan Xie2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012704

    Abstract Hypersonic aircraft face complex aerodynamic forces and severe aerothermal issues. While aerodynamic and aerothermal empirical solutions exhibit high computational efficiency, they lack precision. Numerical approaches equipped with accuracy but come with high computational costs. To address the contradiction between precision and efficiency, some research on hypersonic unsteady aerodynamic and aerothermal Reduced Order Models (ROMs) was conducted in this study, using Kriging surrogate method.
    Meanwhile, hypersonic aircraft typically feature numerous thin-wall structures. The strong coupling of aerodynamic, aerothermal, and elasticity will inevitably lead to aerothermoelastic effects. This study centered on the Thermal Protection System (TPS) panel… More >

  • Open Access

    ARTICLE

    Recovery of Solid Oxide Fuel Cell Waste Heat by Thermoelectric Generators and Alkali Metal Thermoelectric Converters

    Wenxia Zhu*, Baishu Chen, Lexin Wang, Chunxiang Wang

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1559-1573, 2024, DOI:10.32604/fhmt.2024.047351 - 30 October 2024

    Abstract A Solid Oxide Fuel Cell (SOFC) is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism. The electrochemical reaction of a solid oxide fuel cell (SOFC) generates heat, and this heat can be recovered and put to use in a waste heat recovery system. In addition to preheating the fuel and oxidant, producing steam for industrial use, and heating and cooling enclosed rooms, this waste heat can be used for many more productive uses. The large waste heat produced by SOFCs is a worry that must… More >

  • Open Access

    ARTICLE

    Concurrent Two–Scale Topology Optimization of Thermoelastic Structures Using a M–VCUT Level Set Based Model of Microstructures

    Jin Zhou, Minjie Shao*, Ye Tian, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1327-1345, 2024, DOI:10.32604/cmes.2024.054059 - 27 September 2024

    Abstract By analyzing the results of compliance minimization of thermoelastic structures, we observed that microstructures play an important role in this optimization problem. Then, we propose to use a multiple variable cutting (M–VCUT) level set-based model of microstructures to solve the concurrent two–scale topology optimization of thermoelastic structures. A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes, thus giving more diversity of microstructure and more flexibility in design optimization. The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method, and then More >

  • Open Access

    REVIEW

    Solar- and/or Radiative Cooling-Driven Thermoelectric Generators: A Critical Review

    Jinglong Wang, Lin Lu*, Kai Jiao

    Energy Engineering, Vol.121, No.10, pp. 2681-2718, 2024, DOI:10.32604/ee.2024.051051 - 11 September 2024

    Abstract Thermoelectric generators (TEGs) play a critical role in collecting renewable energy from the sun and deep space to generate clean electricity. With their environmentally friendly, reliable, and noise-free operation, TEGs offer diverse applications, including areas with limited power infrastructure, microelectronic devices, and wearable technology. The review thoroughly analyses TEG system configurations, performance, and applications driven by solar and/or radiative cooling, covering non-concentrating, concentrating, radiative cooling-driven, and dual-mode TEGs. Materials for solar absorbers and radiative coolers, simulation techniques, energy storage management, and thermal management strategies are explored. The integration of TEGs with combined heat and power More >

  • Open Access

    ARTICLE

    Magneto-Photo-Thermoelastic Excitation Rotating Semiconductor Medium Based on Moisture Diffusivity

    Khaled Lotfy1,2, A. M. S. Mahdy3,*, Alaa A. El-Bary4, E. S. Elidy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 107-126, 2024, DOI:10.32604/cmes.2024.053199 - 20 August 2024

    Abstract In this research, we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity. The problem aims to analyze the interconnection between plasma and moisture diffusivity processes, as well as thermo-elastic waves. The study examines the photo-thermoelasticity transport process while considering the impact of moisture diffusivity. By employing Laplace’s transformation technique, we derive the governing equations of the photo-thermo-elastic medium. These equations include the equations for carrier density, elastic waves, moisture transport, heat conduction, and constitutive relationships. Mechanical stresses, thermal conditions, and plasma boundary conditions More >

  • Open Access

    PROCEEDINGS

    Damping Influences on Instability Characteristics of Panel Aero-ThermoElastic System

    Xiaochen Wang1,*, Wei Tian2, Shengxi Zhou2, Peng Li1, Zhichun Yang2, Yiren Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010582

    Abstract The complex damping influences on the instability characteristics of the panel aero-thermo-elastic system are theoretically investigated from the energy perspectives. Firstly, by assuming a constant, uniform thermal loading and adopting the piston theory, the panel aeroelastic governing equation is obtained. After deriving the panel buckling and vibration modes, the reduced order model can be built and adopted to investigate the system primary instability in the modal coordinates. Then, introducing the modal damping coefficients ratio η > 0, the critical parameters of the panel flutter oscillation are theoretically evaluated based on the on-conservative energy balance principle, thus More >

  • Open Access

    ARTICLE

    Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System

    N. Kanagaraj1,*, Obaid Aldosari1, M. Ramasamy2, M. Vijayakumar2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2291-2306, 2023, DOI:10.32604/iasc.2023.039101 - 21 June 2023

    Abstract The generation of electricity, considering environmental and economic factors is one of the most important challenges of recent years. In this article, a thermoelectric generator (TEG) is proposed to use the thermal energy of an electric water heater (EWH) to generate electricity independently. To improve the energy conversion efficiency of the TEG, a fuzzy logic controller (FLC)-based perturb & observe (P&O) type maximum power point tracking (MPPT) control algorithm is used in this study. An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers. Also, a… More >

  • Open Access

    ARTICLE

    Waste Heat Recovery from a Drier Receiver of an A/C Unit Using Thermoelectric Generators

    Ali Jaber Abdulhamed1,*, Aws Al-Akam1, Ahmed A. Abduljabbar2, Mohammed H. Alkhafaji3

    Energy Engineering, Vol.120, No.8, pp. 1729-1746, 2023, DOI:10.32604/ee.2023.029069 - 05 June 2023

    Abstract Thermoelectric generators (TEGs) are considered promising devices for waste heat recovery from various systems. The Seebeck effect can be utilized to generate power using the residual heat emitted by the filter dryer receiver (FDR) of an air conditioning (A/C) system, which would otherwise go to waste. The study aims to build a set of thermoelectric generators (TEG) to collect the waste heat of the FDR and generate low-power electricity. A novel electrical circuit with two transformers is designed and fabricated to produce a more stable voltage for operation and charging. The thermoelectric generator (TEGs) was… More >

  • Open Access

    ARTICLE

    Three Dimensional Coupling between Elastic and Thermal Fields in the Static Analysis of Multilayered Composite Shells

    Salvatore Brischetto*, Roberto Torre, Domenico Cesare

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2551-2594, 2023, DOI:10.32604/cmes.2023.026312 - 09 March 2023

    Abstract This new work aims to develop a full coupled thermomechanical method including both the temperature profile and displacements as primary unknowns of the model. This generic full coupled 3D exact shell model permits the thermal stress investigation of laminated isotropic, composite and sandwich structures. Cylindrical and spherical panels, cylinders and plates are analyzed in orthogonal mixed curved reference coordinates. The 3D equilibrium relations and the 3D Fourier heat conduction equation for spherical shells are coupled and they trivially can be simplified in those for plates and cylindrical panels. The exponential matrix methodology is used to… More >

  • Open Access

    ARTICLE

    New Trends in Fuzzy Modeling Through Numerical Techniques

    M. M. Alqarni1, Muhammad Rafiq2, Fazal Dayan3,*, Jan Awrejcewicz4, Nauman Ahmed5, Ali Raza6, Muhammad Ozair Ahmad5, Witold Pawłowski7, Emad E. Mahmoud8

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6371-6388, 2023, DOI:10.32604/cmc.2023.033553 - 28 December 2022

    Abstract Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica. It is spread through person-to-person contact or by eating or drinking food or water contaminated with feces. Its transmission rate depends on the number of cysts present in the environment. The traditional models assumed a homogeneous and contradictory transmission with reality. The heterogeneity of its transmission rate is a significant factor when modeling disease dynamics. The heterogeneity of disease transmission can be described mathematically by introducing fuzzy theory. In this context, a fuzzy SEIR Amoebiasis disease model is considered in this More >

Displaying 1-10 on page 1 of 93. Per Page