Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    MNIST Handwritten Digit Classification Based on Convolutional Neural Network with Hyperparameter Optimization

    Haijian Shao1, Edwin Ma2, Ming Zhu1, Xing Deng3, Shengjie Zhai1,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3595-3606, 2023, DOI:10.32604/iasc.2023.036323 - 15 March 2023

    Abstract Accurate handwriting recognition has been a challenging computer vision problem, because static feature analysis of the text pictures is often inadequate to account for high variance in handwriting styles across people and poor image quality of the handwritten text. Recently, by introducing machine learning, especially convolutional neural networks (CNNs), the recognition accuracy of various handwriting patterns is steadily improved. In this paper, a deep CNN model is developed to further improve the recognition rate of the MNIST handwritten digit dataset with a fast-converging rate in training. The proposed model comes with a multi-layer deep arrange More >

  • Open Access

    ARTICLE

    An Image Localization System Based on Single Photon

    Yanyi Wu1, Xiaoyu Li2, Qinsheng Zhu1,*, Xiaolei Liu2, Hao Wu1, Shan Yang3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6139-6149, 2022, DOI:10.32604/cmc.2022.032086 - 28 July 2022

    Abstract As an essential part of artificial intelligence, many works focus on image processing which is the branch of computer vision. Nevertheless, image localization faces complex challenges in image processing with image data increases. At the same time, quantum computing has the unique advantages of improving computing power and reducing energy consumption. So, combining the advantage of quantum computing is necessary for studying the quantum image localization algorithms. At present, many quantum image localization algorithms have been proposed, and their efficiency is theoretically higher than the corresponding classical algorithms. But, in quantum computing experiments, quantum gates… More >

  • Open Access

    ARTICLE

    Adversarial Examples Generation Algorithm through DCGAN

    Biying Deng1, Ziyong Ran1, Jixin Chen1, Desheng Zheng1,*, Qiao Yang2, Lulu Tian3

    Intelligent Automation & Soft Computing, Vol.30, No.3, pp. 889-898, 2021, DOI:10.32604/iasc.2021.019727 - 20 August 2021

    Abstract In recent years, due to the popularization of deep learning technology, more and more attention has been paid to the security of deep neural networks. A wide variety of machine learning algorithms can attack neural networks and make its classification and judgement of target samples wrong. However, the previous attack algorithms are based on the calculation of the corresponding model to generate unique adversarial examples, and cannot extract attack features and generate corresponding samples in batches. In this paper, Generative Adversarial Networks (GAN) is used to learn the distribution of adversarial examples generated by FGSM More >

Displaying 1-10 on page 1 of 3. Per Page