Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (300)
  • Open Access

    ARTICLE

    Electroencephalography (EEG) Based Neonatal Sleep Staging and Detection Using Various Classification Algorithms

    Hafza Ayesha Siddiqa1, Muhammad Irfan1, Saadullah Farooq Abbasi2,*, Wei Chen1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1759-1778, 2023, DOI:10.32604/cmc.2023.041970

    Abstract Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system. EEG based neonatal sleep staging provides valuable information about an infant’s growth and health, but is challenging due to the unique characteristics of EEG and lack of standardized protocols. This study aims to develop and compare 18 machine learning models using Automated Machine Learning (autoML) technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification. The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning. The data is obtained from neonates at post-menstrual age 37 ± 05 weeks.… More >

  • Open Access

    ARTICLE

    Chimp Optimization Algorithm Based Feature Selection with Machine Learning for Medical Data Classification

    Firas Abedi1, Hayder M. A. Ghanimi2, Abeer D. Algarni3, Naglaa F. Soliman3,*, Walid El-Shafai4,5, Ali Hashim Abbas6, Zahraa H. Kareem7, Hussein Muhi Hariz8, Ahmed Alkhayyat9

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2791-2814, 2023, DOI:10.32604/csse.2023.038762

    Abstract Data mining plays a crucial role in extracting meaningful knowledge from large-scale data repositories, such as data warehouses and databases. Association rule mining, a fundamental process in data mining, involves discovering correlations, patterns, and causal structures within datasets. In the healthcare domain, association rules offer valuable opportunities for building knowledge bases, enabling intelligent diagnoses, and extracting invaluable information rapidly. This paper presents a novel approach called the Machine Learning based Association Rule Mining and Classification for Healthcare Data Management System (MLARMC-HDMS). The MLARMC-HDMS technique integrates classification and association rule mining (ARM) processes. Initially, the chimp optimization algorithm-based feature selection (COAFS)… More >

  • Open Access

    ARTICLE

    GMLP-IDS: A Novel Deep Learning-Based Intrusion Detection System for Smart Agriculture

    Abdelwahed Berguiga1,2,*, Ahlem Harchay1,2, Ayman Massaoudi1,2, Mossaad Ben Ayed3, Hafedh Belmabrouk4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 379-402, 2023, DOI:10.32604/cmc.2023.041667

    Abstract Smart Agriculture, also known as Agricultural 5.0, is expected to be an integral part of our human lives to reduce the cost of agricultural inputs, increasing productivity and improving the quality of the final product. Indeed, the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important. To provide more comprehensive protection against potential cyber-attacks, this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture. The proposed Intrusion Detection System IDS, namely GMLP-IDS, combines the feedforward neural network Multilayer Perceptron (MLP) and the Gaussian Mixture Model (GMM) that can better protect the Smart Agriculture… More >

  • Open Access

    ARTICLE

    A Comprehensive Analysis of Datasets for Automotive Intrusion Detection Systems

    Seyoung Lee1, Wonsuk Choi1, Insup Kim2, Ganggyu Lee2, Dong Hoon Lee1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3413-3442, 2023, DOI:10.32604/cmc.2023.039583

    Abstract Recently, automotive intrusion detection systems (IDSs) have emerged as promising defense approaches to counter attacks on in-vehicle networks (IVNs). However, the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation. Despite the availability of several datasets for automotive IDSs, there has been a lack of comprehensive analysis focusing on assessing these datasets. This paper aims to address the need for dataset assessment in the context of automotive IDSs. It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs, to evaluate the quality of datasets. These metrics take into consideration various… More >

  • Open Access

    ARTICLE

    Identification of EML4 as a key hub gene for endometriosis and its molecular mechanism and potential drug prediction based on the GEO database

    XIANBAO FANG1,#, MINGYAN TANG1,#, ZIYANG YU1,#, JIAQI DING1, CHONG CUI2, HONG ZHANG1,*

    BIOCELL, Vol.47, No.9, pp. 2059-2068, 2023, DOI:10.32604/biocell.2023.030565

    Abstract Objective: Key genes were screened to analyze molecular mechanisms and their drug targets of endometriosis by applying a bioinformatics approach. Methods: Gene expression profiles of endometriosis and healthy controls were obtained from the Gene Expression Omnibus database. Significant differentially expressed genes were screened using the limma package. Correlation pathways were screened by Spearman correlation analysis on the echinoderm microtubule-associated protein-like 4 (EML4) and enrichment in endometriosis pathways and estimated by the GSVA package. Immune characteristics were assessed by the “ESTIMATE” R package. Potential regulatory pathways were determined by enrichment analysis. The SWISS-MODE website was used in homology modeling with EML4… More > Graphic Abstract

    Identification of EML4 as a key hub gene for endometriosis and its molecular mechanism and potential drug prediction based on the GEO database

  • Open Access

    ARTICLE

    An Interpolation Method for Karhunen–Loève Expansion of Random Field Discretization

    Zi Han1,*, Zhentian Huang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 245-272, 2024, DOI:10.32604/cmes.2023.029708

    Abstract In the context of global mean square error concerning the number of random variables in the representation, the Karhunen–Loève (KL) expansion is the optimal series expansion method for random field discretization. The computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the Fredholm integral eigenvalue problem (IEVP). The paper proposes an interpolation method based on different interpolation basis functions such as moving least squares (MLS), least squares (LS), and finite element method (FEM) to solve the IEVP. Compared with the Galerkin method based on finite element or Legendre polynomials, the main advantage of the… More > Graphic Abstract

    An Interpolation Method for Karhunen–Loève Expansion of Random Field Discretization

  • Open Access

    REVIEW

    Embracing the Future: AI and ML Transforming Urban Environments in Smart Cities

    Gagan Deep*, Jyoti Verma

    Journal on Artificial Intelligence, Vol.5, pp. 57-73, 2023, DOI:10.32604/jai.2023.043329

    Abstract This research explores the increasing importance of Artificial Intelligence (AI) and Machine Learning (ML) with relation to smart cities. It discusses the AI and ML’s ability to revolutionize various aspects of urban environments, including infrastructure, governance, public safety, and sustainability. The research presents the definition and characteristics of smart cities, highlighting the key components and technologies driving initiatives for smart cities. The methodology employed in this study involved a comprehensive review of relevant literature, research papers, and reports on the subject of AI and ML in smart cities. Various sources were consulted to gather information on the integration of AI… More >

  • Open Access

    ARTICLE

    PLDMLT: Multi-Task Learning of Diabetic Retinopathy Using the Pixel-Level Labeled Fundus Images

    Hengyang Liu, Chuncheng Huang*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1745-1761, 2023, DOI:10.32604/cmc.2023.040710

    Abstract In the field of medical images, pixel-level labels are time-consuming and expensive to acquire, while image-level labels are relatively easier to obtain. Therefore, it makes sense to learn more information (knowledge) from a small number of hard-to-get pixel-level annotated images to apply to different tasks to maximize their usefulness and save time and training costs. In this paper, using Pixel-Level Labeled Images for Multi-Task Learning (PLDMLT), we focus on grading the severity of fundus images for Diabetic Retinopathy (DR). This is because, for the segmentation task, there is a finely labeled mask, while the severity grading task is without classification… More >

  • Open Access

    ARTICLE

    Explainable Artificial Intelligence-Based Model Drift Detection Applicable to Unsupervised Environments

    Yongsoo Lee, Yeeun Lee, Eungyu Lee, Taejin Lee*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1701-1719, 2023, DOI:10.32604/cmc.2023.040235

    Abstract Cybersecurity increasingly relies on machine learning (ML) models to respond to and detect attacks. However, the rapidly changing data environment makes model life-cycle management after deployment essential. Real-time detection of drift signals from various threats is fundamental for effectively managing deployed models. However, detecting drift in unsupervised environments can be challenging. This study introduces a novel approach leveraging Shapley additive explanations (SHAP), a widely recognized explainability technique in ML, to address drift detection in unsupervised settings. The proposed method incorporates a range of plots and statistical techniques to enhance drift detection reliability and introduces a drift suspicion metric that considers… More >

  • Open Access

    ARTICLE

    Priority Detector and Classifier Techniques Based on ML for the IoMT

    Rayan A. Alsemmeari1,*, Mohamed Yehia Dahab2, Badraddin Alturki1, Abdulaziz A. Alsulami3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1853-1870, 2023, DOI:10.32604/cmc.2023.038589

    Abstract Emerging telemedicine trends, such as the Internet of Medical Things (IoMT), facilitate regular and efficient interactions between medical devices and computing devices. The importance of IoMT comes from the need to continuously monitor patients’ health conditions in real-time during normal daily activities, which is realized with the help of various wearable devices and sensors. One major health problem is workplace stress, which can lead to cardiovascular disease or psychiatric disorders. Therefore, real-time monitoring of employees’ stress in the workplace is essential. Stress levels and the source of stress could be detected early in the fog layer so that the negative… More >

Displaying 11-20 on page 2 of 300. Per Page