Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    Radiation Effect on Heat Transfer Analysis of MHD Flow of Upper Convected Maxwell Fluid between a Porous and a Moving Plate

    P. Pai Nityanand, B. Devaki, G. Bhat Pareekshith, V. S. Sampath Kumar*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 655-673, 2024, DOI:10.32604/fhmt.2024.050237 - 20 May 2024

    Abstract The study in this manuscript aims to analyse the impact of thermal radiation on the two-dimensional magnetohydrodynamic flow of upper convected Maxwell (UCM) fluid between parallel plates. The lower plate is porous and stationary, while the top plate is impermeable and moving. The equations that describe the flow are transformed into non-linear ordinary differential equations with boundary conditions by employing similarity transformations. The Homotopy Perturbation Method (HPM) is then employed to approach the obtained non-linear ordinary differential equations and get an approximate analytical solution. The analysis includes plotting the velocity profile for different Reynolds number… More >

  • Open Access

    ARTICLE

    Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/Shrinking Sheet with a Heat Source or Sink

    Parakapali Roja1, Shaik Mohammed Ibrahim2, Thummala Sankar Reddy3, Giulio Lorenzini4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 257-274, 2024, DOI:10.32604/fdmp.2023.042283 - 14 December 2023

    Abstract This study examines the behavior of a micropolar nanofluid flowing over a sheet in the presence of a transverse magnetic field and thermal effects. In addition, chemical (first-order homogeneous) reactions are taken into account. A similarity transformation is used to reduce the system of governing coupled non-linear partial differential equations (PDEs), which account for the transport of mass, momentum, angular momentum, energy and species, to a set of non-linear ordinary differential equations (ODEs). The Runge-Kutta method along with shooting method is used to solve them. The impact of several parameters is evaluated. It is shown More >

  • Open Access

    ARTICLE

    MHD FLOW OF JEFFREY FLUID WITH HEAT ABSORPTION AND THERMO-DIFFUSION

    Ahmad Shafiquea , Muhammad Ramzana,*, Zubda Ikrama, M. Amira, Mudassar Nazara

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-10, 2023, DOI:10.5098/hmt.20.4

    Abstract Unsteady flow of fractionalized Jeffrey fluid over a plate is considered. In addition, thermo diffusion and slip effects are also used in the problem. The flow model is solved using Constant proportional Caputo fractional derivative. Initially, the governing equations are made non-dimensional and then solved by Laplace transform. From the Figs., it is observed that Prandtl and Smith numbers have decreasing effect on fluid motion, whereas thermodiffusion have increasing effect on fluid motion. Moreover, comparison among fractionalized and ordinary velocity fields is also drawn. More >

  • Open Access

    ARTICLE

    MATHEMATICAL MODELING OF MHD FLOW OF HYBRID MICROPOLAR FERROFLUIDS ABOUT A SOLID SPHERE

    Hamzeh T. Alkasasbeh*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.43

    Abstract The purpose of this study is mathematical simulation the combined free convection of hybrid micropolar ferrofluids about a solid sphere with magnetic force. We studied the magnetic oxide (Fe3O4) and Cobalt Iron Oxide (CoFe2O4) nanoparticles and suspended them into water–ethylene glycol (EG) (H2O+(CH2OH)2 (50-50%) mixture. Numerical results for correlated physical quantities were gained through the Keller Box method along with the assistance of MATLAB software. The influence of relevant contributing parameters on physical quantities are inspected through tables and graphical illustrations. According to the current findings, the mono ferrofluid has the highest local skin friction, heat transmission More >

  • Open Access

    ARTICLE

    EFFECT OF DIFFUSION-THERMO ON MHD FLOW OF MAXWELL FLUID WITH HEAT AND MASS TRANSFER

    Muhammad Ramzana,*, Zaib Un Nisab , Mudassar Nazara,c,†

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-9, 2022, DOI:10.5098/hmt.19.12

    Abstract A magnetohydrodynamics (MHD) flow of fractional Maxwell fluid past an exponentially accelerated vertical plate is considered. In addition, other factors such as heat generation and chemical reaction are used in the problem. The flow model is solved using Caputo fractional derivative. Initially, the governing equations are made non-dimensional and then solved by Laplace transform. The influence of different parameters like diffusion thermo, fractional parameter, Magnetic field, chemical reaction, Prandtl number and Maxwell parameter are discussed through numerous graphs. From figures, it is observed that fluid motion decreases with increasing values of Schmidt number and chemical More >

  • Open Access

    ARTICLE

    Bioconvection Cross Diffusion Effects on MHD Flow of Nanofluids over Three Different Geometries with Melting

    Tahir Kamran, Muhammad Imran*, Muhammad N. Naeem, Mohsan Raza

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 1023-1039, 2022, DOI:10.32604/cmes.2022.017391 - 14 March 2022

    Abstract Currently, nanofluid is a hot area of interest for researchers. The nanofluid with bioconvection phenomenon attracted the researchers owing to its numerous applications in the field of nanotechnology, microbiology, nuclear science, heat storage devices, biosensors, biotechnology, hydrogen bomb, engine of motors, cancer treatment, the atomic reactor, cooling of devices, and in many more. This article presents the bioconvection cross-diffusion effects on the magnetohydrodynamic flow of nanofluids on three different geometries (cone, wedge, and plate) with mixed convection. The temperature-dependent thermal conductivity, thermal diffusivity, and Arrhenius activation energy applications are considered on the fluid flow with… More >

  • Open Access

    ARTICLE

    Bioconvection Mangnetohydrodynamic Tangent Hyperbolic Nanofluid Flow with Quartic Chemical Reaction Past a Paraboloid Surface

    S. M. Atif1, W. A. Khan2,*, Muhammad Abbas3,*, Umair Rashid4

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 205-220, 2022, DOI:10.32604/cmes.2022.017304 - 29 November 2021

    Abstract In this numerical study, the effect of quartic autocatalysis type of chemical reaction, buoyancy force and thermal radiation phenomenon and magnetic effect on tangent hyperbolic nanofluid past an upper horizontal surface of a paraboloid has been studied. By considering the Buongiorno model approach, a diffusion of unequal coefficients in the presence of gyrotactic microorganism is discussed. Implementation of microorganism's idea is used to stabilize the nanoparticles through bioconvection. The modeled PDEs of the problems are converted into nonlinear ODEs with the assistant of the similarity transformations. To tackle nonlinear ODEs, MATLAB package bvp4c is used. More >

  • Open Access

    ARTICLE

    ANALYSIS OF MHD FLOW AND HEAT TRANSFER OF LAMINAR FLOW BETWEEN POROUS DISKS

    V. S. Sampath Kumara , N. P. Paia,† , B. Devakia

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-7, 2021, DOI:10.5098/hmt.16.3

    Abstract A study is carried out for the two dimensional laminar flow of conducting fluid in presence of magnetic field. The governing non-linear equations of motion are transformed in to dimensionaless form. A solution is obtained by homotopy perturbation method and it is valid for moderately large Reynolds numbers for injection at the wall. Also an efficient algorithm based finite difference scheme is developed to solve the reduced coupled ordinary differential equations with necessary boundary conditions. The effects of Reynolds number, the magnetic parameter and the pradantle number on flow velocity and tempratare distribution is analysed More >

  • Open Access

    ARTICLE

    STEADY MHD FLOW OVER A YAWED CYLINDER WITH MASS TRANSFER

    A. Sahaya Jenifera , P. Saikrishnana,*, J. Rajakumarb

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.4

    Abstract This paper examines the steady magnetohydrodynamic (MHD) flow of water over a yawed cylinder with variable fluid properties and non-uniform mass transfer. The impact of viscous dissipation is taken into consideration. The velocity and temperature fields are governed by coupled nonlinear partial differential equations together with boundary constraints. These governing equations are converted to dimensionless form with suitable non-similar transformations and then solved using an implicit finite difference method and the quasi-linearization technique. The results indicate that the yaw angle enhancement declines the skin friction coefficient in the axial direction and the heat transfer coefficient. More >

  • Open Access

    ARTICLE

    A Fractal-Fractional Model for the MHD Flow of Casson Fluid in a Channel

    Nadeem Ahmad Sheikh1,2, Dennis Ling Chuan Ching1, Thabet Abdeljawad3,4,5, Ilyas Khan6,*, Muhammad Jamil7,8, Kottakkaran Sooppy Nisar9

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1385-1398, 2021, DOI:10.32604/cmc.2021.011986 - 05 February 2021

    Abstract An emerging definition of the fractal-fractional operator has been used in this study for the modeling of Casson fluid flow. The magnetohydrodynamics flow of Casson fluid has cogent in a channel where the motion of the upper plate generates the flow while the lower plate is at a static position. The proposed model is non-dimensionalized using the Pi-Buckingham theorem to reduce the complexity in solving the model and computation time. The non-dimensional fractal-fractional model with the power-law kernel has been solved through the Laplace transform technique. The Mathcad software has been used for illustration of… More >

Displaying 1-10 on page 1 of 38. Per Page