Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    ARTICLE

    ANALYTICAL STUDY OF UNSTEADY SQUEEZED FLOW OF WATER BASE CNTS NANOFLUID WITH MAGNETIC FIELD AND VARIABLE THERMAL CONDUCTIVITY OVER A STRETCHING SURFACE

    Ali Rehmana , Zabidin Salleha,* , Taza Gulb

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-7, 2020, DOI:10.5098/hmt.14.20

    Abstract This research paper explains the analytical solution unsteady squeezing flow of water based CNTs for both MWCNT and SWCNT in the presence of magnetic field and variable thermal conductivity. The given partial differential equation is converted to nonlinear ordinary differential equation by using the similarity transformation and solve by analytical method namely optimal homotopy asymptotic method (OHAM) to obtain analytical solution of the nonlinear problem which analyze the problem. The result of important parameter for both velocity and temperature profiles are plotted and discussed. The BVPh 2.0 package is used to obtain the convergence of the problem up to 25… More >

  • Open Access

    ARTICLE

    UNSTEADY MHD BLASIUS AND SAKIADIS FLOWS WITH VARIABLE THERMAL CONDUCTIVITY IN THE PRESENCE OF THERMAL RADIATION AND VISCOUS DISSIPATION

    Stanford Shateyia,∗, Hillary Muzarab

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-10, 2020, DOI:10.5098/hmt.14.18

    Abstract A theoretical analysis has been carried out to investigate the influence of unsteadiness on the laminar two-phase magnetohydrodynamic nanofluid flow filled with porous medium under the combined effects of Brownian motion and thermophoresis. Thermal variable conductivity, thermal radiation and viscous dissipation effects are also considered in this numerical study. The highly nonlinear partial differential equations are transformed into a set of coupled nonlinear ordinary differential equations through suitable similarity transformations. The resultant ordinary differential equations are then numerically solved using the spectral quasilinearization method. The effects of the pertinent physical parameters over the fluid velocity, temperature, concentration, skin friction, Nusselt… More >

  • Open Access

    ARTICLE

    INVESTIGATION ON CNTS-WATER AND HUMAN BLOOD BASED CASSON NANOFLUID FLOW OVER A STRETCHING SHEET UNDER IMPACT OF MAGNETIC FIELD

    Hamzeh T. Alkasasbeha,*, Mohammed Z. Swalmehb , Hebah G. Bani Saeedc , Feras M. Al Faqihc , Adeeb G. Talafhac

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-7, 2020, DOI:10.5098/hmt.14.15

    Abstract This study aims at considering the properties of heat transfer and magneto-hydrodynamics (MHD) Casson nanofluid at the existence of free convection boundary layer flow with Carbon Nanotubes (CNTs) suspended in human blood/water as based fluid on a stretching sheet. Two types of CNTs nanoparticles, single walled carbon nanotubes (SWCNTs) and multi walled carbon nanotubes (MWCNTs), are taken into account. The governing partial differential equations are transformed to partial differential equations using similar transformation, then solved numerically by an implicit finite difference scheme known as Keller-box method (KBM). The results for physical quantities, the local skin friction, and local Nusselt number,… More >

  • Open Access

    ARTICLE

    INFLUENCE OF CRITICAL PARAMETERS OF THERMOPHOROSIS ON MHD NON-DARCY FLOW OF A CASSON FLUID PAST A PERMEABLE STRETCHING SHEET

    Kolli Vijayaa,* , G. Venkata Ramana Reddya

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-8, 2020, DOI:10.5098/hmt.14.12

    Abstract Present investigation aims at analyzing the properties of heat and transport phenomena of thermal energy and species mass in a non-Darcy Casson fluid flow induced by a erected porous elongated surface considering the effect of non-linear radioactive heat, thermophorosis, first order chemical reaction, Newtonian heating, thermo diffusion, permeability and slip conditions. Influence of critical parameters are widely studied. By inducing the variables of similarity the basic boundary layer equations are transmuted into dimensionless equations and are resolved arithmetically using Runge – Kutta – Fehlberg shooting techniques method. The dominance of critical parameters against velocity, temperature, and concentration are explicated through… More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY ON HEAT AND MASS TRANSFER BY MHD MIXED CONVECTION FLOW ALONG A VERTICAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM

    Saddam Atteyia Mohammad*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-10, 2020, DOI:10.5098/hmt.14.7

    Abstract An analysis was performed to study the effects of variable viscosity on steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow along a vertical cylinder embedded in a non-Darcy porous medium. The analysis was performed for the case of power-law variations of both the surface temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of temperature. Certain transformations were employed to transform the governing differential equations to non-similar form. The transformed equations were solved numerically by finite difference method. The entire regime of mixed convection was studied. From this study… More >

  • Open Access

    ARTICLE

    HALL AND ION SLIP EFFECTS ON AG - WATER BASED MHD NANOFLUID FLOW OVER A SEMI-INFINITE VERTICAL PLATE EMBEDDED IN A POROUS MEDIUM

    CH. Baby Rania , N. Vedavathib , K.S. Balamuruganc, G. Dharmaiahd,*

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-11, 2020, DOI:10.5098/hmt.14.6

    Abstract The present work provides an analysis of the Dufour, radiation absorption, Hall and ion slip effects on MHD free convective rotating flow of Agwater based nanofluid past a semi-infinite permeable moving plate with constant heat source. In this regard, metal will be considered as nanoparticles with water as base fluid. Governing nonlinear boundary layer equations and boundary conditions are transformed into a system of nonlinear ordinary coupled differential equations and are solved by perturbation technique. Effects of different parameters on skin friction coefficient, local Nusselt number and Local Sherwood number are also discussed. More >

  • Open Access

    ARTICLE

    MHD FLOW OF CARREAU NANOFLUID EXPLORED USING CNT OVER A NONLINEAR STRETCHED SHEET

    P.S.S. Nagalakshm*, N. Vijaya

    Frontiers in Heat and Mass Transfer, Vol.14, No.1, pp. 1-9, 2020, DOI:10.5098/hmt.14.4

    Abstract In the present investigation is to magnetohydrodymaics (MHD) radiative flow of an incompressible steady flow of Carreau nanofluid explored with carbon nanotubes. The boundary layer flow and heat transfer to a Carreau nanofluid model over a non- linear stretching surface is introduced. The Carreau model, adequate for many non-Newtonian fluids is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical values of the power law exponent n. The modeled boundary layer conservation equations are converted to non-linear coupled ordinary differential equations by a suitable transformation.R language with bvp solver… More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION AND TEMPERATURE GRADIENT HEAT SOURCE EFFECTS ON MHD COUETTE FLOW WITH PERMEABLE BASE IN THE PRESENCE OF VISCOUS AND JOULES DISSIPATION

    K.S. Balamurugana,*, N. Udaya Bhaskara Varmab, J.L. Ramaprasadc

    Frontiers in Heat and Mass Transfer, Vol.15, No.1, pp. 1-7, 2020, DOI:10.5098/hmt.15.8

    Abstract In this paper the entropy generation and temperature gradient heat source effects on MHD couette flow with permeable base in the presence of thermal radiation, viscous and joule's dissipation is studied. An exact solution of governing equations has been attained in closed form. The influences of several parameters on the velocity and temperature profiles and entropy generation are analyzed through graphs. Bejan number for different values have been calculated and displayed pictorially. The skin friction coefficient and Nusselt number at channel walls are derived and discussed their behaviour through tables. The entropy generation increases with intensifying magnetic field or thermal… More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION OF THE EFFECTS OF HEAT AND MASS TRANSFER ON UNSTEADY MHD FREE CONVECTION FLOW PAST AN INFINITE VERTICAL PLATE

    D. Santhi Kumaria,*, Venkata Subrahmanyam Sajjaa, P. M. Kishoreb,†

    Frontiers in Heat and Mass Transfer, Vol.16, No.1, pp. 1-10, 2021, DOI:10.5098/hmt.16.24

    Abstract This study attempts to explore a qualitative analysis of the effects of Soret on an unsteady magnetohydrodynamics free convection flow of a chemically reacting incompressible fluid past an infinite vertical plate embedded in a porous medium taking the source of heat and thermal radiation into account as well as viscous dissipation. The central equations are scrupulously converted into sets of coupled nonlinear partial differential equations for providing logical solutions. The method of Galerkin finite element is used considering appropriate boundary conditions for diverse physical metrics and then numerically analyzed employing MATLAB. A significant change in velocity, temperature, concentration profiles is… More >

  • Open Access

    ARTICLE

    LAPLACE TRANSFORM SOLUTION OF UNSTEADY MHD JEFFRY FLUID FLOW PAST VERTICALLY INCLINED PORUS PLATE

    K.V. Chandra Sekhar*

    Frontiers in Heat and Mass Transfer, Vol.16, No.1, pp. 1-6, 2021, DOI:10.5098/hmt.16.10

    Abstract The behavior of unsteady MHD flow of Jeffrey fluid over an inclined porous plate was analyzed in the present article. The governing partial differential equations of the flow phenomena were solved by using powerful mathematical tool Laplace transforms. The variations of velocity, temperature of the flow with respect to dissimilar physical parameters are analyzed through graphs. The parameters of engineering interest are skin friction and Nusselt number. For better understanding of the problem, variations of skin friction and Nusselt number with respect to critical parameters are tabulated. More >

Displaying 1-10 on page 1 of 62. Per Page  

Share Link