Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6,590)
  • Open Access

    ARTICLE

    Flowback Behavior of Deep Coalbed Methane Horizontal Wells

    Wei Sun1,2, Yanqing Feng1,2,*, Yuan Wang1,2, Zengping Zhao1,2, Qian Wang2, Xiangyun Li3, Dong Feng4

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.075630 - 06 February 2026

    Abstract Significant differences exist between deep and medium-shallow coalbed methane (CBM) reservoirs. The unclear understanding of flowback and production behavior severely constrains the development of deep CBM resources. To address this challenge, guided by the gas-liquid two-phase flow theory in ultra-low permeability reservoirs, and integrating theoretical analysis, numerical simulation, and insights from production practices, this study classifies the flowback and production stages of deep CBM well considering the Daning-Jixian Block, Eastern Ordos Basin as a representative case. We summarize the flowback characteristics for each stage and establish a standard flowback production type curve, aiming to guide… More > Graphic Abstract

    Flowback Behavior of Deep Coalbed Methane Horizontal Wells

  • Open Access

    ARTICLE

    Gaussian Process Regression-Based Optimization of Fan-Shaped Film Cooling Holes on Concave Walls

    Yanzhao Yang1, Xiaowen Song2, Zhiying Deng2,*, Jianyang Yu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074345 - 06 February 2026

    Abstract In this study, a Gaussian Process Regression (GPR) surrogate model coupled with a Bayesian optimization algorithm was employed for the single-objective design optimization of fan-shaped film cooling holes on a concave wall. Fan-shaped holes, commonly used in gas turbines and aerospace applications, flare toward the exit to form a protective cooling film over hot surfaces, enhancing thermal protection compared to cylindrical holes. An initial hole configuration was used to improve adiabatic cooling efficiency. Design variables included the hole injection angle, forward expansion angle, lateral expansion angle, and aperture ratio, while the objective function was the More >

  • Open Access

    ARTICLE

    A New Normalized Climate Index (U2) for Türkiye: Comparison with Classical Methods

    Erdinç Uslan1,*, Emin Ulugergerli2

    Revue Internationale de Géomatique, Vol.35, pp. 31-51, 2026, DOI:10.32604/rig.2026.075081 - 05 February 2026

    Abstract Climate classification systems are essential tools for analyzing regional climatic behavior, assessing long-term aridity patterns, and evaluating the impacts of climate change on water resources and ecosystem resilience. This study introduces a new Climate Classification Method based on uniform and unitless variables, referred to as the U2 Climate Classification (U2CC). The proposed U2 Index was designed to overcome structural limitations of the classical De Martonne (1942) and Erinç (1949) indices, which rely on raw precipitation–temperature ratios and are sensitive to extreme values, particularly subzero temperatures. The U2 methodology consisted of two key steps: (i) normalization… More >

  • Open Access

    ARTICLE

    Physiological and Metabolic Responses of Red Leaf Lettuce (Lactuca sativa L.) under Low Pressure Conditions

    Wonkyu Yi, Jongseok Park*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2026.073450 - 30 January 2026

    Abstract Understanding plant responses under low-pressure conditions is important for developing closed cultivation systems that simulate space environments. This study aimed to assess the effects of different pressure levels on growth, photosynthesis, and secondary metabolite accumulation in red leaf lettuce (Lactuca sativa L. var. ‘Super Caesar’s Red’). Plants were cultivated for three weeks in sealed chambers under 101 kPa (atmospheric pressure), 66 kPa (moderate low pressure), and 33 kPa (severe low pressure). Growth analysis showed that leaf length and leaf area decreased significantly with reduced pressure, while chlorophyll content and SPAD values increased gradually. Photosynthetic measurements indicated More >

  • Open Access

    ARTICLE

    Impacts of Fertilization and Soil Amendments on Rhizosphere Microbiota and Growth of Panax: A Meta-Analysis

    Hong Chen1,2, Runze Yang1,2, Jing Tian1,2, Boyuan Xu1,2, Qiang Chen3, Yuzong Chen1,2, Ming-Xiao Zhao1,2,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.072276 - 30 January 2026

    Abstract Panax species are globally recognized for their high medicinal and economic value, yet large-scale cultivation is constrained by high production costs, progressive soil acidification, and persistent soil-borne diseases. Although various soil improvement strategies have been tested, a comprehensive synthesis of their comparative effectiveness has been lacking. Here, we conducted a meta-analysis of 1381 observations from 54 independent studies to evaluate the effects of conventional fertilizers, microbial fertilizers, organic amendments, and inorganic amendments on Panax cultivation. Our results demonstrate that microbial fertilizers, organic amendments, and inorganic amendments significantly increased soil pH, thereby ameliorating soil acidification. Among them,… More >

  • Open Access

    ARTICLE

    MCPSFOA: Multi-Strategy Enhanced Crested Porcupine-Starfish Optimization Algorithm for Global Optimization and Engineering Design

    Hao Chen1, Tong Xu1, Yutian Huang2, Dabo Xin1,*, Changting Zhong1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075792 - 29 January 2026

    Abstract Optimization problems are prevalent in various fields of science and engineering, with several real-world applications characterized by high dimensionality and complex search landscapes. Starfish optimization algorithm (SFOA) is a recently optimizer inspired by swarm intelligence, which is effective for numerical optimization, but it may encounter premature and local convergence for complex optimization problems. To address these challenges, this paper proposes the multi-strategy enhanced crested porcupine-starfish optimization algorithm (MCPSFOA). The core innovation of MCPSFOA lies in employing a hybrid strategy to improve SFOA, which integrates the exploratory mechanisms of SFOA with the diverse search capacity of… More >

  • Open Access

    ARTICLE

    Geometrically Nonlinear Analyses of Isotropic and Laminated Shells by a Hierarchical Quadrature Element Method

    Yingying Lan, Bo Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075706 - 29 January 2026

    Abstract In this work, the Hierarchical Quadrature Element Method (HQEM) formulation of geometrically exact shells is proposed and applied for geometrically nonlinear analyses of both isotropic and laminated shells. The stress resultant formulation is developed within the HQEM framework, consequently significantly simplifying the computations of residual force and stiffness matrix. The present formulation inherently avoids shear and membrane locking, benefiting from its high-order approximation property. Furthermore, HQEM’s independent nodal distribution capability conveniently supports local p-refinement and flexibly facilitates mesh generation in various structural configurations through the combination of quadrilateral and triangular elements. Remarkably, in lateral buckling… More >

  • Open Access

    ARTICLE

    Algorithmically Enhanced Data-Driven Prediction of Shear Strength for Concrete-Filled Steel Tubes

    Shengkang Zhang1, Yong Jin2,*, Soon Poh Yap1,*, Haoyun Fan1, Shiyuan Li3, Ahmed El-Shafie4, Zainah Ibrahim1, Amr El-Dieb5

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075351 - 29 January 2026

    Abstract Concrete-filled steel tubes (CFST) are widely utilized in civil engineering due to their superior load-bearing capacity, ductility, and seismic resistance. However, existing design codes, such as AISC and Eurocode 4, tend to be excessively conservative as they fail to account for the composite action between the steel tube and the concrete core. To address this limitation, this study proposes a hybrid model that integrates XGBoost with the Pied Kingfisher Optimizer (PKO), a nature-inspired algorithm, to enhance the accuracy of shear strength prediction for CFST columns. Additionally, quantile regression is employed to construct prediction intervals for… More >

  • Open Access

    ARTICLE

    Computational Analysis of Thermal Buckling in Doubly-Curved Shells Reinforced with Origami-Inspired Auxetic Graphene Metamaterials

    Ehsan Arshid*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074898 - 29 January 2026

    Abstract In this work, a computational modelling and analysis framework is developed to investigate the thermal buckling behavior of doubly-curved composite shells reinforced with graphene-origami (G-Ori) auxetic metamaterials. A semi-analytical formulation based on the First-Order Shear Deformation Theory (FSDT) and the principle of virtual displacements is established, and closed-form solutions are derived via Navier’s method for simply supported boundary conditions. The G-Ori metamaterial reinforcements are treated as programmable constructs whose effective thermo-mechanical properties are obtained via micromechanical homogenization and incorporated into the shell model. A comprehensive parametric study examines the influence of folding geometry, dispersion arrangement, More >

  • Open Access

    ARTICLE

    Gradient Descent-Based Prediction of Heat-Transmission Rate of Engine Oil-Based Hybrid Nanofluid over Trapezoidal and Rectangular Fins for Sustainable Energy Systems

    Maddina Dinesh Kumar1,#, S. U. Mamatha2, Khalid Masood3, Nehad Ali Shah4,#, Se-Jin Yook1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074680 - 29 January 2026

    Abstract Fluid dynamic research on rectangular and trapezoidal fins is aimed at increasing heat transfer by means of large surfaces. The trapezoidal cavity form is compared with its thermal and flow performance, and it is revealed that trapezoidal fins tend to be more efficient, particularly when material optimization is critical. Motivated by the increasing need for sustainable energy management, this work analyses the thermal performance of inclined trapezoidal and rectangular porous fins utilising a unique hybrid nanofluid. The effectiveness of nanoparticles in a working fluid is primarily determined by their thermophysical properties; hence, optimising these properties… More >

Displaying 1-10 on page 1 of 6590. Per Page