Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    MicroRNA-212 Targets Mitogen-Activated Protein Kinase 1 to Inhibit Proliferation and Invasion of Prostate Cancer Cells

    Bo Hu*, Xunbo Jin*, Jianbo Wang

    Oncology Research, Vol.26, No.7, pp. 1093-1102, 2018, DOI:10.3727/096504018X15154112497142

    Abstract Prostate cancer (PCa) is the second most commonly diagnosed malignancy and the fifth leading cause of cancer-related deaths in males worldwide. MicroRNAs (miRNAs) may serve as important regulators in PCa occurrence and development. Therefore, understanding the expression and functions of PCa-related miRNAs may be beneficial for the identification of novel therapeutic methods for patients with PCa. In this study, miRNA-212 (miR-212) was evidently downregulated in PCa tissues and several PCa cell lines. Functional assays showed that the resumption of miR-212 expression attenuated cell proliferation and invasion and increased the apoptosis of PCa. In addition, mitogen-activated More >

  • Open Access

    ARTICLE

    Long Noncoding RNA SChLAP1 Accelerates the Proliferation and Metastasis of Prostate Cancer via Targeting miR-198 and Promoting the MAPK1 Pathway

    Ye Li*†‡, Haihong Luo§, Nan Xiao*, Jianmin Duan*, Zhiping Wang*, Shuanke Wang

    Oncology Research, Vol.26, No.1, pp. 131-143, 2018, DOI:10.3727/096504017X14944585873631

    Abstract Prostate cancer has become the most commonly diagnosed and the second leading cause of cancer-related deaths in males. The long noncoding RNA second chromosome locus associated with prostate-1 (SChLAP1) has been found to be overexpressed in a subset of prostate cancer. However, the significance and mechanism of SChLAP1 in prostate cancer are not well known. In this study, we explored the role of SChLAP1 in prostate cancer tissues, cell lines, and mouse models. The effect of SChLAP1 on miR-198 and MAPK1 was specifically examined. We found that SChLAP1 expression was significantly increased in prostate cancer… More >

  • Open Access

    ARTICLE

    Network pharmacology and molecular docking identify mechanisms of medicinal plant-derived 1,2,3,4,6-penta-O-galloyl-beta-D-glucose treating gastric cancer

    MAN REN1,2,3,#, YUAN YANG1,2,#, DAN LI4, NANNAN ZHAO5, YUPING WANG2,6,*, YONGNING ZHOU2,6,*

    BIOCELL, Vol.47, No.5, pp. 977-989, 2023, DOI:10.32604/biocell.2023.028402

    Abstract Background: 1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG) is a natural polyphenolic compound derived from multiple medicinal plants with favorable anticancer activity. Methods: In this study, the mechanisms of PGG against gastric cancer were explored through network pharmacology and molecular docking. First, the targets of PGG were searched in the Herbal Ingredients’ Targets (HIT), Similarity Ensemble Approach (SEA), and Super-PRED databases. The potential targets related to gastric cancer were predicted from the Human Gene Database (GeneCards) and DisGeNET databases. The intersecting targets of PGG and gastric cancer were obtained by Venn diagram and then subjected to protein-protein interaction analysis to screen… More >

Displaying 1-10 on page 1 of 3. Per Page