Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,969)
  • Open Access

    ARTICLE

    AGPAT3 Regulates Immune Microenvironment in Osteosarcoma via Lysophosphatidic Acid Metabolism

    Shenghui Su, Yu Zeng, Jiaxin Chen, Xieping Dong*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070558 - 30 December 2025

    Abstract Background: Recent studies have shown glycerolipid metabolism played an essential role in multiple tumors, however, its function in osteosarcoma is unclear. This study aimed to explore the role of glycerolipid metabolism in osteosarcoma. Methods: We conducted bioinformatics analysis using data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and single-cell RNA sequencing. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to identify the Glycerolipid metabolism-related genes associated with the clinical outcome of osteosarcoma. Tumor-associated macrophages (TAMs) and their interactions with immune cells were examined through single-cell analysis and co-culture experiments.… More >

  • Open Access

    ARTICLE

    STC2+ Malignant Cell State Associated with EMT, Tumor Microenvironment Remodeling, and Poor Prognosis Revealed by Single-Cell and Spatial Transcriptomics in Colorectal Cancer

    Kai Gui1,#, Tianyi Yang1,#, Chengying Xiong1, Yue Wang1, Zhiqiang He1, Wuxian Li2,3,*, Min Tang1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070143 - 30 December 2025

    Abstract Objectives: The mechanism by which specific tumor subsets in colorectal cancer (CRC) use alternative metabolic pathways, particularly those modulated by hypoxia and fructose, to alter the tumor microenvironment (TME) remains unclear. This study aimed to identify these malignant subpopulations and characterize their intercellular signaling networks and spatial organization through an integrative multi-omics approach. Methods: Leveraging bulk datasets, single-cell RNA sequencing, and integrative spatial transcriptomics, we developed a prognostic model based on hypoxia-and fructose metabolism-related genes (HFGs) to delineate tumor cell subpopulations and their intercellular signaling networks. Results: We identified a specific subset of stanniocalcin-2 positive (STC2+)… More > Graphic Abstract

    STC2+ Malignant Cell State Associated with EMT, Tumor Microenvironment Remodeling, and Poor Prognosis Revealed by Single-Cell and Spatial Transcriptomics in Colorectal Cancer

  • Open Access

    ARTICLE

    Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm

    Binjiang Hu1,*, Yihua Zhu2, Liang Tu1,2, Zun Ma3, Xian Meng3, Kewei Xu3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069777 - 27 December 2025

    Abstract This paper proposes an equivalent modeling method for photovoltaic (PV) power stations via a particle swarm optimization (PSO) K-means clustering (KMC) algorithm with passive filter parameter clustering to address the complexities, simulation time cost and convergence problems of detailed PV power station models. First, the amplitude–frequency curves of different filter parameters are analyzed. Based on the results, a grouping parameter set for characterizing the external filter characteristics is established. These parameters are further defined as clustering parameters. A single PV inverter model is then established as a prerequisite foundation. The proposed equivalent method combines the… More >

  • Open Access

    ARTICLE

    Machine Learning Based Uncertain Free Vibration Analysis of Hybrid Composite Plates

    Bindi Saurabh Thakkar1, Pradeep Kumar Karsh2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.072839 - 09 December 2025

    Abstract This study investigates the uncertain dynamic characterization of hybrid composite plates by employing advanced machine-assisted finite element methodologies. Hybrid composites, widely used in aerospace, automotive, and structural applications, often face variability in material properties, geometric configurations, and manufacturing processes, leading to uncertainty in their dynamic response. To address this, three surrogate-based machine learning approaches like radial basis function (RBF), multivariate adaptive regression splines (MARS), and polynomial neural networks (PNN) are integrated with a finite element framework to efficiently capture the stochastic behavior of these plates. The research focuses on predicting the first three natural frequencies… More >

  • Open Access

    REVIEW

    FSL-TM: Review on the Integration of Federated Split Learning with TinyML in the Internet of Vehicles

    Meenakshi Aggarwal1, Vikas Khullar2,*, Nitin Goyal3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.072673 - 09 December 2025

    Abstract The Internet of Vehicles, or IoV, is expected to lessen pollution, ease traffic, and increase road safety. IoV entities’ interconnectedness, however, raises the possibility of cyberattacks, which can have detrimental effects. IoV systems typically send massive volumes of raw data to central servers, which may raise privacy issues. Additionally, model training on IoV devices with limited resources normally leads to slower training times and reduced service quality. We discuss a privacy-preserving Federated Split Learning with Tiny Machine Learning (TinyML) approach, which operates on IoV edge devices without sharing sensitive raw data. Specifically, we focus on… More >

  • Open Access

    ARTICLE

    Improving Person Recognition for Single-Person-in-Photos: Intimacy in Photo Collections

    Xiaoyi Duan, Tianqi Zou, Chenyang Wang, Yu Gu, Xiuying Li*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070683 - 09 December 2025

    Abstract Person recognition in photo collections is a critical yet challenging task in computer vision. Previous studies have used social relationships within photo collections to address this issue. However, these methods often fail when performing single-person-in-photos recognition in photo collections, as they cannot rely on social connections for recognition. In this work, we discard social relationships and instead measure the relationships between photos to solve this problem. We designed a new model that includes a multi-parameter attention network for adaptively fusing visual features and a unified formula for measuring photo intimacy. This model effectively recognizes individuals More >

  • Open Access

    ARTICLE

    Machine Learning-Based GPS Spoofing Detection and Mitigation for UAVs

    Charlotte Olivia Namagembe, Mohamad Ibrahim, Md Arafatur Rahman*, Prashant Pillai

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.070316 - 09 December 2025

    Abstract The rapid proliferation of commercial unmanned aerial vehicles (UAVs) has revolutionized fields such as precision agriculture and disaster response. However, their heavy reliance on GPS navigation leaves them highly vulnerable to spoofing attacks, with potentially severe consequences. To mitigate this threat, we present a machine learning-driven framework for real-time GPS spoofing detection, designed with a balance of detection accuracy and computational efficiency. Our work is distinguished by the creation of a comprehensive dataset of 10,000 instances that integrates both simulated and real-world data, enabling robust and generalizable model development. A comprehensive evaluation of multiple classification More >

  • Open Access

    ARTICLE

    Cognitive Erasure-Coded Data Update and Repair for Mitigating I/O Overhead

    Bing Wei, Ming Zhong, Qian Chen, Yi Wu*, Yubin Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069910 - 09 December 2025

    Abstract In erasure-coded storage systems, updating data requires parity maintenance, which often leads to significant I/O amplification due to “write-after-read” operations. Furthermore, scattered parity placement increases disk seek overhead during repair, resulting in degraded system performance. To address these challenges, this paper proposes a Cognitive Update and Repair Method (CURM) that leverages machine learning to classify files into write-only, read-only, and read-write categories, enabling tailored update and repair strategies. For write-only and read-write files, CURM employs a data-difference mechanism combined with fine-grained I/O scheduling to minimize redundant read operations and mitigate I/O amplification. For read-write files,… More >

  • Open Access

    ARTICLE

    An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning

    Kemahyanto Exaudi1,2, Deris Stiawan3,*, Bhakti Yudho Suprapto1, Hanif Fakhrurroja4, Mohd. Yazid Idris5, Tami A. Alghamdi6, Rahmat Budiarto6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.069377 - 10 November 2025

    Abstract Sudden wildfires cause significant global ecological damage. While satellite imagery has advanced early fire detection and mitigation, image-based systems face limitations including high false alarm rates, visual obstructions, and substantial computational demands, especially in complex forest terrains. To address these challenges, this study proposes a novel forest fire detection model utilizing audio classification and machine learning. We developed an audio-based pipeline using real-world environmental sound recordings. Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network (CNN), enabling the capture of distinctive fire acoustic signatures (e.g., crackling, roaring) that are minimally impacted by… More >

  • Open Access

    ARTICLE

    Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring

    Moneerah Alotaibi*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069195 - 10 November 2025

    Abstract Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods, which often demand extensive computational resources and struggle with diverse data acquisition techniques. This research presents a novel approach for vehicle classification and recognition in aerial image sequences, integrating multiple advanced techniques to enhance detection accuracy. The proposed model begins with preprocessing using Multiscale Retinex (MSR) to enhance image quality, followed by Expectation-Maximization (EM) Segmentation for precise foreground object identification. Vehicle detection is performed using the state-of-the-art YOLOv10 framework, while feature extraction incorporates Maximally Stable Extremal… More >

Displaying 1-10 on page 1 of 1969. Per Page