Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Multi-Feature Fusion-Guided Multiscale Bidirectional Attention Networks for Logistics Pallet Segmentation

    Weiwei Cai1,2, Yaping Song1, Huan Duan1, Zhenwei Xia1, Zhanguo Wei1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1539-1555, 2022, DOI:10.32604/cmes.2022.019785 - 19 April 2022

    Abstract In the smart logistics industry, unmanned forklifts that intelligently identify logistics pallets can improve work efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans. Therefore, they play a critical role in smart warehousing, and semantics segmentation is an effective method to realize the intelligent identification of logistics pallets. However, most current recognition algorithms are ineffective due to the diverse types of pallets, their complex shapes, frequent blockades in production environments, and changing lighting conditions. This paper proposes a novel multi-feature fusion-guided multiscale bidirectional attention (MFMBA) neural network for logistics… More >

Displaying 1-10 on page 1 of 1. Per Page