Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Logistic Regression with Elliptical Curve Cryptography to Establish Secure IoT

    J. R. Arunkumar1,*, S. Velmurugan2, Balarengadurai Chinnaiah3, G. Charulatha4, M. Ramkumar Prabhu4, A. Prabhu Chakkaravarthy5

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2635-2645, 2023, DOI:10.32604/csse.2023.031605

    Abstract Nowadays, Wireless Sensor Network (WSN) is a modern technology with a wide range of applications and greatly attractive benefits, for example, self-governing, low expenditure on execution and data communication, long-term function, and unsupervised access to the network. The Internet of Things (IoT) is an attractive, exciting paradigm. By applying communication technologies in sensors and supervising features, WSNs have initiated communication between the IoT devices. Though IoT offers access to the highest amount of information collected through WSNs, it leads to privacy management problems. Hence, this paper provides a Logistic Regression machine learning with the Elliptical Curve Cryptography technique (LRECC) to… More >

  • Open Access

    ARTICLE

    A Cloud Based Sentiment Analysis through Logistic Regression in AWS Platform

    Mohemmed Sha*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 857-868, 2023, DOI:10.32604/csse.2023.031321

    Abstract The use of Amazon Web Services is growing rapidly as more users are adopting the technology. It has various functionalities that can be used by large corporates and individuals as well. Sentiment analysis is used to build an intelligent system that can study the opinions of the people and help to classify those related emotions. In this research work, sentiment analysis is performed on the AWS Elastic Compute Cloud (EC2) through Twitter data. The data is managed to the EC2 by using elastic load balancing. The collected data is subjected to preprocessing approaches to clean the data, and then machine… More >

  • Open Access

    ARTICLE

    Predictive-Analysis-based Machine Learning Model for Fraud Detection with Boosting Classifiers

    M. Valavan, S. Rita*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 231-245, 2023, DOI:10.32604/csse.2023.026508

    Abstract Fraud detection for credit/debit card, loan defaulters and similar types is achievable with the assistance of Machine Learning (ML) algorithms as they are well capable of learning from previous fraud trends or historical data and spot them in current or future transactions. Fraudulent cases are scant in the comparison of non-fraudulent observations, almost in all the datasets. In such cases detecting fraudulent transaction are quite difficult. The most effective way to prevent loan default is to identify non-performing loans as soon as possible. Machine learning algorithms are coming into sight as adept at handling such data with enough computing influence.… More >

  • Open Access

    ARTICLE

    A Highly Accurate Dysphonia Detection System Using Linear Discriminant Analysis

    Anas Basalamah1, Mahedi Hasan2, Shovan Bhowmik2, Shaikh Akib Shahriyar2,*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 1921-1938, 2023, DOI:10.32604/csse.2023.027399

    Abstract The recognition of pathological voice is considered a difficult task for speech analysis. Moreover, otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysphonia that are caused by voice alteration of vocal folds and their accuracy is between 60%–70%. To enhance detection accuracy and reduce processing speed of dysphonia detection, a novel approach is proposed in this paper. We have leveraged Linear Discriminant Analysis (LDA) to train multiple Machine Learning (ML) models for dysphonia detection. Several ML models are utilized like Support Vector Machine (SVM), Logistic Regression, and K-nearest neighbor (K-NN) to predict… More >

  • Open Access

    ARTICLE

    Perspicacious Apprehension of HDTbNB Algorithm Opposed to Security Contravention

    Shyla1,*, Vishal Bhatnagar2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2431-2447, 2023, DOI:10.32604/iasc.2023.029126

    Abstract The exponential pace of the spread of the digital world has served as one of the assisting forces to generate an enormous amount of information flowing over the network. The data will always remain under the threat of technological suffering where intruders and hackers consistently try to breach the security systems by gaining personal information insights. In this paper, the authors proposed the HDTbNB (Hybrid Decision Tree-based Naïve Bayes) algorithm to find the essential features without data scaling to maximize the model’s performance by reducing the false alarm rate and training period to reduce zero frequency with enhanced accuracy of… More >

  • Open Access

    ARTICLE

    Logistic Regression Trust–A Trust Model for Internet-of-Things Using Regression Analysis

    Feslin Anish Mon Solomon1,*, Godfrey Winster Sathianesan2, R. Ramesh3

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1125-1142, 2023, DOI:10.32604/csse.2023.024292

    Abstract Internet of Things (IoT) is a popular social network in which devices are virtually connected for communicating and sharing information. This is applied greatly in business enterprises and government sectors for delivering the services to their customers, clients and citizens. But, the interaction is successful only based on the trust that each device has on another. Thus trust is very much essential for a social network. As Internet of Things have access over sensitive information, it urges to many threats that lead data management to risk. This issue is addressed by trust management that help to take decision about trustworthiness… More >

  • Open Access

    ARTICLE

    Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk

    Polin Rahman1, Ahmed Rifat1, MD. IftehadAmjad Chy1, Mohammad Monirujjaman Khan1,*, Mehedi Masud2, Sultan Aljahdali2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 757-775, 2023, DOI:10.32604/csse.2023.021469

    Abstract Heart failure is now widely spread throughout the world. Heart disease affects approximately 48% of the population. It is too expensive and also difficult to cure the disease. This research paper represents machine learning models to predict heart failure. The fundamental concept is to compare the correctness of various Machine Learning (ML) algorithms and boost algorithms to improve models’ accuracy for prediction. Some supervised algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Trees (DT), Random Forest (RF), Logistic Regression (LR) are considered to achieve the best results. Some boosting algorithms like Extreme Gradient Boosting (XGBoost) and CatBoost are… More >

  • Open Access

    ARTICLE

    Planetscope Nanosatellites Image Classification Using Machine Learning

    Mohd Anul Haq*

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1031-1046, 2022, DOI:10.32604/csse.2022.023221

    Abstract To adopt sustainable crop practices in changing climate, understanding the climatic parameters and water requirements with vegetation is crucial on a spatiotemporal scale. The Planetscope (PS) constellation of more than 130 nanosatellites from Planet Labs revolutionize the high-resolution vegetation assessment. PS-derived Normalized Difference Vegetation Index (NDVI) maps are one of the highest resolution data that can transform agricultural practices and management on a large scale. High-resolution PS nanosatellite data was utilized in the current study to monitor agriculture’s spatiotemporal assessment for the Al-Qassim region, Kingdom of Saudi Arabia (KSA). The time series of NDVI was utilized to assess the vegetation… More >

  • Open Access

    ARTICLE

    A Hybrid Meta-Classifier of Fuzzy Clustering and Logistic Regression for Diabetes Prediction

    Altyeb Altaher Taha*, Sharaf Jameel Malebary

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6089-6105, 2022, DOI:10.32604/cmc.2022.023848

    Abstract Diabetes is a chronic health condition that impairs the body's ability to convert food to energy, recognized by persistently high levels of blood glucose. Undiagnosed diabetes can cause many complications, including retinopathy, nephropathy, neuropathy, and other vascular disorders. Machine learning methods can be very useful for disease identification, prediction, and treatment. This paper proposes a new ensemble learning approach for type 2 diabetes prediction based on a hybrid meta-classifier of fuzzy clustering and logistic regression. The proposed approach consists of two levels. First, a base-learner comprising six machine learning algorithms is utilized for predicting diabetes. Second, a hybrid meta-learner that… More >

  • Open Access

    ARTICLE

    Classification of Parkinson Disease Based on Patient’s Voice Signal Using Machine Learning

    Imran Ahmed1, Sultan Aljahdali2, Muhammad Shakeel Khan1, Sanaa Kaddoura3,*

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 705-722, 2022, DOI:10.32604/iasc.2022.022037

    Abstract Parkinson’s disease (PD) is a nervous system disorder first described as a neurological condition in 1817. It is one of the more prevalent diseases in the elderly, and Alzheimer’s is the second most common neurodegenerative illness. It impacts the patient’s movement. Symptoms start gradually with tremors, stiffness in movement, and speech and voice disorders. Researches proved that 89% of patients with Parkinson’s has speech disorder including uncertain articulation, hoarse and breathy voice and monotone pitch. The cause behind this voice change is the reduction of dopamine due to damage of neurons in the substantia nigra responsible for dopamine production. In… More >

Displaying 1-10 on page 1 of 26. Per Page  

Share Link