Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer

    YONGJIAN HUANG, JINZHOU WANG, JIUHUA XU, NING RUAN*

    Oncology Research, Vol.32, No.11, pp. 1765-1776, 2024, DOI:10.32604/or.2024.045564 - 16 October 2024

    Abstract Background: Despite significant advancements in the development of anticancer therapies over the past few decades, the clinical management of colorectal cancer remains a challenging task. This study aims to investigate the inhibitory effects of cancer-targeting liposomes against colorectal cancer. Materials and Methods: Liposomes consisting of 3β-[N-(N′, N′-dimethylamino ethane)carbamoyl]-cholesterol (DC-CHOL), cholesterol (CHOL), and dioleoylphosphatidylethanolamine (DOPE) at a molar ratio of 1:1:0.5 were created and used as carriers to deliver an apoptosis-inducing plasmid encoding the tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL) gene, along with the toll-like receptor (TLR7) agonist Rsiquimod (R848). The rationale behind this design is that More > Graphic Abstract

    Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer

  • Open Access

    COMMENTARY

    A commentary: harnessing vesicles power with new scenes of membrane-based devices for drug delivery

    NOELIA L. D´ELĺA1,2, A. NOEL GRAVINA1,2, LUCIANO A. BENEDINI2,3,*, PAULA V. MESSINA1,2

    BIOCELL, Vol.48, No.10, pp. 1401-1403, 2024, DOI:10.32604/biocell.2024.055512 - 02 October 2024

    Abstract This work shows relevant interactions between cells and drug-delivery systems based on vesicles crucial for therapeutic activity. This interplay drives strategies for the design of new drug-carry. Among the described systems are found liposomes, extracellular vesicles, and hybrid systems. The text details their properties, advantages, and constraints, and eventually, a perspective about the future of these formulations is proposed. More >

  • Open Access

    REVIEW

    Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier

    KARAN WADHWA1, PAYAL CHAUHAN1, SHOBHIT KUMAR2, RAKESH PAHWA3,*, RAVINDER VERMA4, RAJAT GOYAL5, GOVIND SINGH1, ARCHANA SHARMA6, NEHA RAO3, DEEPAK KAUSHIK1,*

    Oncology Research, Vol.32, No.5, pp. 877-897, 2024, DOI:10.32604/or.2024.047278 - 23 April 2024

    Abstract Background: Glioblastoma multiforme (GBM) is recognized as the most lethal and most highly invasive tumor. The high likelihood of treatment failure arises from the presence of the blood-brain barrier (BBB) and stem cells around GBM, which avert the entry of chemotherapeutic drugs into the tumor mass. Objective: Recently, several researchers have designed novel nanocarrier systems like liposomes, dendrimers, metallic nanoparticles, nanodiamonds, and nanorobot approaches, allowing drugs to infiltrate the BBB more efficiently, opening up innovative avenues to prevail over therapy problems and radiation therapy. Methods: Relevant literature for this manuscript has been collected from a comprehensive More > Graphic Abstract

    Targeting brain tumors with innovative nanocarriers: bridging the gap through the blood-brain barrier

Displaying 1-10 on page 1 of 3. Per Page