Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (55)
  • Open Access

    ARTICLE

    Formation Mechanism of Biomass Aromatic Hydrocarbon Tar on Quantum Chemistry

    Bo Chen1, Bo Liu2,*, Yong Chao3, Chao Zhong1

    Journal of Renewable Materials, Vol.10, No.12, pp. 3491-3504, 2022, DOI:10.32604/jrm.2022.021302

    Abstract The formation process of aromatic hydrocarbon tar during the pyrolysis process of biomass components of cellulose and lignin was carried out by quantum chemical calculation based on density functional theory method B3LYP/6-31G++(d, p). 5-Hydroxymethylfurfural was chosen as the model compound of cellulose and hemicellulose, and syringaldehyde was chosen as the model compound of lignin. The calculation results show that the formation process of cellulose monocyclic aromatic hydrocarbon tar is the conversion process of benzene ring from furan ring, and the highest reaction energy barrier appears in the process of decarbonylation, which is 370.8 kJ/mol. The… More >

  • Open Access

    ARTICLE

    Formaldehyde Free Renewable Thermosetting Foam Based on Biomass Tannin with a Lignin Additive

    Bowen Liu1, Yunxia Zhou1, Hisham Essawy2, Shang Feng1, Xuehui Li1, Jingjing Liao1, Xiaojian Zhou1,3,*, Jun Zhang1,*, Sida Xie1

    Journal of Renewable Materials, Vol.10, No.11, pp. 3009-3024, 2022, DOI:10.32604/jrm.2022.019848

    Abstract This study presents easily prepared free formaldehyde bio-based foam based on a prepared thermosetting resin comprising tannin–lignin–furfuryl alcohol-glyoxal (TLFG) via mechanical stirring in presence of ether as a foaming agent. The foam was developed through a co-polycondensation reaction of glyoxal and furfuryl alcohol with condensed tannin and lignin, which is a forest-derived product. Investigation using scanning electron microscopy (SEM) showed more closed-cell structure without cracks and collapse in the TLFG foam, with a higher apparent density with respect to tannin–furanic–formaldehyde (TFF) foam. Differential scanning calorimetry (DSC), dynamic thermomechanical analysis (DTMA), and thermogravimetric analysis (TGA) investigations More >

  • Open Access

    ARTICLE

    Curing Kinetics of Tannin and Lignin Biobased Adhesives Determined by DSC and ABES

    Jaša Saražin1, Ida Poljanšek1, Antonio Pizzi2, Milan Šernek1,*

    Journal of Renewable Materials, Vol.10, No.8, pp. 2117-2131, 2022, DOI:10.32604/jrm.2022.019602

    Abstract The curing process of two biobased adhesives: pine tanninhexamine (TH) and organosolv lignin non-isocyanate polyurethane (NIPU), suitable for interior nonstructural use, were compared with commercial urea-formaldehyde (UF) adhesive. Changes in chemical structure before and after the curing process were observed with Fouriertransform infrared spectroscopy (FTIR). The process of adhesive curing was monitored with differential scanning calorimetry (DSC) and the automated bonding evaluation system (ABES). Both DSC and ABES measurements confirmed UF as the fastest and NIPU as the slowest curing adhesive observed. Taking into account the ABES results, the optimal pressing parameters for the TH… More >

  • Open Access

    ARTICLE

    The Influence of Freeze-Thaw Cycles on Unconfined Compressive Strength of Lignin Fiber-Reinforced Loess

    Zhongnan Gao1,2,#, Xiumei Zhong1,2,#, Qian Wang1,2,*, Yongqi Su3, Jun Wang1,2

    Journal of Renewable Materials, Vol.10, No.4, pp. 1063-1080, 2022, DOI:10.32604/jrm.2022.017374

    Abstract In the seasonal permafrost region with loess distribution, the influence of freeze-thaw cycles on the engineering performance of reinforced loess must be paid attention to. Many studies have shown that the use of fiber materials can improve the engineering performance of soil and its ability to resist freeze-thaw cycles. At the same time, as eco-environmental protection has become the focus, which has been paid more and more attention to, it has become a trend to find new environmentally friendly improved materials that can replace traditional chemical additives. The purpose of this paper uses new environmental-friendly… More >

  • Open Access

    ARTICLE

    Synthesis of Lignin-Based Polyacid in an Acidic Ionic Liquid: A Green Method to Improve the Performance of Lignin as Catalyst in Urea-Formaldehyde Resin

    Hamed Younesi-Kordkheili1,*, Antonio Pizzi2

    Journal of Renewable Materials, Vol.10, No.2, pp. 237-246, 2022, DOI:10.32604/jrm.2022.017851

    Abstract The aim of this research was to investigate the effect of ionic liquid treated lignin-based polyacid as a catalyst for urea-formaldehyde (UF) resins. Esterification of lignin was carried out, without any catalyst, with anhydride maleic and 1-butyl-3-methylimidazolium hydrogen sulfate [Bmim][HSO4] as acidic ionic liquid to form maleated lignin-based polyacids (MA-IL). The performance of MA-IL as UF resin catalyst was respectively compared to hyroxymethylated lignin-based polyacid (MA-HL) and to NH4Cl. The FTIR analysis indicated that the proportion of -COOH and C-O bonds increased due to the esterification of lignin with ionic liquid rather than its hyroxymethylation. Physicochemical… More >

  • Open Access

    ARTICLE

    Study on Preparation of Lignin-Containing Nanocellulose from Bamboo Parenchyma

    Wenli Gu1, Shiyi Zeng1, Assima Dauletbek2, Bin Xu1,3,*, Xinzhou Wang1, Man Yuan1, Yanni Gu1

    Journal of Renewable Materials, Vol.10, No.2, pp. 385-399, 2022, DOI:10.32604/jrm.2022.016457

    Abstract Bamboo vascular bundle fiber and parenchyma (BP) are separated by high-temperature treatment with saturated steam. Bamboo vascular bundle fiber is widely used in the market, but how to develop and utilize parenchyma tissue is a difficult problem. The sulfated cellulose nanofibers (ANFs) were obtained by sulfating BP with a deep eutectic solvent (DES), which provided a theoretical basis for the value-added utilization of BP. Using DES as the reaction medium and reagent, the BP was grafted with a sulfonic acid group to form a gel substance in water, ANFs and nanocellulose gel were obtained by More > Graphic Abstract

    Study on Preparation of Lignin-Containing Nanocellulose from Bamboo Parenchyma

  • Open Access

    ARTICLE

    Chemically Modified Lignin: Correlation between Structure and Biodegradability

    Meifeng Wang1,2, Wubliker Dessie2, Hui Li1,*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2119-2128, 2021, DOI:10.32604/jrm.2021.016811

    Abstract Lignin is the most abundant heteropolymer based on aromatic subunits in nature. Large quantities of lignin are annually produced from pulping processes and biorefinery industries. Its unclearly defined structure and difficult biodegradation mainly limit its utilization. This work focused on the effect of hydroxylation of lignin on its microbial degradation. Butyloxy carbonyl-modified lignin, and hydroxylated-lignin were synthesized with di-tert-butyl dicarbonate and hydrogen peroxide, respectively, using lignin as raw material. The degradation of the modifiedlignins both by P. chrysosporium and B. subtilis were analyzed using UV-vis spectroscopy. Results revealed that the lignin degradation velocity raises with the increase More > Graphic Abstract

    Chemically Modified Lignin: Correlation between Structure and Biodegradability

  • Open Access

    ARTICLE

    Preparation and Properties of Bio-Based Flame Retardant L-APP/Poly(L-lactic acid) Composites

    Qionglin Luo1, Mingliang Wang2, Hui Zhang1, Yuejun Ouyang1, Hongwei Lin1, You Shu1,*, Shengpei Su1,2,*

    Journal of Renewable Materials, Vol.9, No.12, pp. 2067-2076, 2021, DOI:10.32604/jrm.2021.016255

    Abstract Poly(L-lactic acid) (PLLA) is a thermoplastic material with complete degradability, high biocompatibility and excellent mechanical properties. It can replace petroleum-based polymers are currently being used in the fields of packaging, agriculture, textiles, medical and so on. However, PLLA’s extremely flammability greatly limits its wider application. An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA. The morphology, impact properties, thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope (SEM), impact tester, differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), limiting oxygen indexer (LOI)… More > Graphic Abstract

    Preparation and Properties of Bio-Based Flame Retardant L-APP/Poly(L-lactic acid) Composites

  • Open Access

    ARTICLE

    Plasma Treatment Induced Chemical Changes of Alkali Lignin to Enhance the Performances of Lignin-Phenol-Formaldehyde Resin Adhesive

    Zhigang Wu1,#, Sicheng Chen1,#, Jiankun Liang2, Lifen Li1, Xuedong Xi3,4, Xue Deng1, Bengang Zhang3,*, Hong Lei4,*

    Journal of Renewable Materials, Vol.9, No.11, pp. 1959-1972, 2021, DOI:10.32604/jrm.2021.016786

    Abstract Alkali lignin was processed by plasma and then used in modification of phenol formaldehyde resin in this study. Chemical structural changes of lignin which was processed by plasma as well as bonding strength, tensile property, curing performance and thermal property of the prepared phenol formaldehyde resin which was modified by the plasma processed lignin were analyzed. Results demonstrated that: (1) Alkali lignin was degraded after the plasma processing. The original groups were destroyed, and the aromatic rings collected abundant free radicals and oxygen-containing functional groups like hydroxyls, carbonyls, carboxyls and acyls were introduced into increase… More > Graphic Abstract

    Plasma Treatment Induced Chemical Changes of Alkali Lignin to Enhance the Performances of Lignin-Phenol-Formaldehyde Resin Adhesive

  • Open Access

    ARTICLE

    Alcoholysis of Waste Polyurethane Rigid Foam and Its Modification with Lignin for Recovery

    Xiaohua Gu1,*, Shiwei Lyu1, Siwen Liu2

    Journal of Renewable Materials, Vol.9, No.11, pp. 1913-1926, 2021, DOI:10.32604/jrm.2021.015400

    Abstract A bi-component alcoholysis agent containing propylene glycol (PG) and ethanolamine (ETA) was used to catalyst the degradation of the waste polyurethane rigid foam. The oligomer polyols obtained through degradation were used as raw materials to produce recycled polyurethane rigid foam composites with lignin as reinforcing filler. The effect of alcoholysis mass ratio on degradation was investigated by analyzing the viscosity, hydroxyl content and chemical structure of the degradation products. The effect of lignin addition on the properties of regenerated polyurethane rigid foam were investigated by analyzing water absorption rate, compressive strength, porosity, thermal stability, thermal More >

Displaying 21-30 on page 3 of 55. Per Page