Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    Color and Gloss Changes of a Lignin-Based Polyurethane Coating under Accelerated Weathering

    Fatemeh Hassani Khorshidi1, Saeed Kazemi Najafi1, Farhood Najafi2,*, Antonio Pizzi3,*, Dick Sandberg4, Rabi Behrooz1

    Journal of Renewable Materials, Vol.12, No.2, pp. 305-323, 2024, DOI:10.32604/jrm.2023.043953

    Abstract The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles. For this purpose, the prepared coatings were applied to pine wood surfaces and weathered artificially. Subsequently, color and gloss of the coatings were measured before and after the weathering test. Field emission scanning electron microscopy (FE-SEM) micrographs prepared from the coatings showed that the average size of nano-particles in the polyurethane substrate was approximately 500 nm. Nuclear magnetic resonance (13C-NMR) spectroscopy showed that strong urethane bonds were formed in the nano-lignin-based polyurethane. Differential calorimetric analysis (DSC) test revealed that the glass-transition temperature… More > Graphic Abstract

    Color and Gloss Changes of a Lignin-Based Polyurethane Coating under Accelerated Weathering

  • Open Access

    ARTICLE

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

    Jiapeng Wang1, Bo Zhang1,*, Haoqiang Cheng1, Zhixiang Xu2

    Journal of Renewable Materials, Vol.11, No.10, pp. 3595-3612, 2023, DOI:10.32604/jrm.2023.030005

    Abstract A new method of pretreatment of corn straw with Phanerochaete chrysosporium combined with pyrolysis was proposed to improve the quality of bio-oil. The characterization results demonstrated that microbial pretreatment was an effective method to decrease the lignin, which can achieve a maximum removal rate of 44.19%. Due to the destruction of biomass structure, the content of alkali metal and alkaline earth metal is reduced. Meanwhile, the depolymerized biomass structure created better pyrolysis conditions to promote the pyrolysis efficiency, increase the average decomposition rate of pyrolysis and reduce the residue. In fast pyrolysis, because of the enrichment of cellulose and the… More > Graphic Abstract

    Enhancing Hydrocarbon-Rich Bio-Oil Production via Catalytic Pyrolysis Fortified with Microorganism Pretreatment

  • Open Access

    ARTICLE

    Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar

    Wenjing Xia1,*, JinHui Wang1, Tao Xu1, Nan Jiang2

    Journal of Renewable Materials, Vol.11, No.8, pp. 3387-3402, 2023, DOI:10.32604/jrm.2023.026971

    Abstract To understand the effects of filler-asphalt ratio on different properties of lignin and polyester fiber reinforced shape memory polyurethane (SMPU)/styrene butadiene styrene (SBS) composite modified asphalt mortar (PSAM), as well as to reveal the reinforcing and toughening mechanisms of lignin and polyester fibers on PSAM, SMPU, SBS and mineral powder were first utilized to prepare PSAM. Then the conventional, rheological and anticracking properties of lignin fiber reinforced PSAM (LFAM) and polyester fiber reinforced PSAM (PFAM) at different filler-asphalt ratios were characterized. Test results indicate that the shear strength, deformation resistance and viscosity are increased after adding 0.8wt% lignin fiber or… More > Graphic Abstract

    Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar

  • Open Access

    ARTICLE

    Application of Wavelength Selection Combined with DS Algorithm for Model Transfer between NIR Instruments

    Honghong Wang1, Zhixin Xiong1,*, Yunchao Hu1, Zhijian Liu1, Long Liang2

    Journal of Renewable Materials, Vol.11, No.6, pp. 2713-2727, 2023, DOI:10.32604/jrm.2023.025817

    Abstract This study aims to realize the sharing of near-infrared analysis models of lignin and holocellulose content in pulp wood on two different batches of spectrometers and proposes a combined algorithm of SPA-DS, MCUVE-DS and SiPLS-DS. The Successive Projection Algorithm (SPA), the Monte-Carlo of Uninformative Variable Elimination (MCUVE) and the Synergy Interval Partial Least Squares (SiPLS) algorithms are respectively used to reduce the adverse effects of redundant information in the transmission process of the full spectrum DS algorithm model. These three algorithms can improve model transfer accuracy and efficiency and reduce the manpower and material consumption required for modeling. These results… More >

  • Open Access

    ARTICLE

    Co-Production of High-Grade Dissolving Pulp, Furfural, and Lignin from Eucalyptus via Extremely Low Acid Pretreatment and Pulping Technologies and Catalysis

    Chengxiang Li, Yue Wu, Chunhui Zhang*, Yao Liu, Qixuan Lin, Junli Ren*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2555-2574, 2023, DOI:10.32604/jrm.2023.026908

    Abstract Hemicellulose and lignin are not reasonably utilized during the dissolved pulp preparation process. This work aimed to propose a process for the co-production of dissolving pulp, furfural, and lignin from eucalyptus. High-grade dissolving pulp was prepared from eucalyptus using a combination of extremely low acid (ELA) pretreatment, Kraft cooking, and elementary chlorine-free (ECF) bleaching. The obtained pre-hydrolysate was catalytic conversion into furfural in a biphasic system, and lignin during Kraft cooking and ECF was recovered. The process condition was discussed as well as the mass flow direction. The results showed that ELA pretreatment could effectively remove 80.1% hemicellulose. Compared with… More >

  • Open Access

    ARTICLE

    Characterization of Formacell Lignin Derived from Black Liquor as a Potential Green Additive for Advanced Biocomposites

    Sri Hidayati1,*, Eugenia Fonny Budiyanto1, Hadi Saputra1, Sutopo Hadi1, Apri Heri Iswanto2,3, Nissa Nurfajrin Solihat4, Petar Antov5, Lee Seng Hua6,7, Widya Fatriasari4,8, Mohd. Sapuan Salit9

    Journal of Renewable Materials, Vol.11, No.6, pp. 2865-2879, 2023, DOI:10.32604/jrm.2023.027579

    Abstract Black liquor is obtained as a by-product of the pulping process, which is used to convert biomass into pulp by removing lignin, hemicelluloses and other extractives from wood to free cellulose fibers. Lignin represents a major constituent in black liquor, with quantities varying from 20% to 30%, of which a very low share is used for manufacturing value-added products, while the rest is mainly burned for energy purposes, thus underestimating its great potential as a raw material. Therefore, it is essential to establish new isolation and extraction methods to increase lignin valorization in the development of bio-based chemicals. The aim… More > Graphic Abstract

    Characterization of Formacell Lignin Derived from Black Liquor as a Potential Green Additive for Advanced Biocomposites

  • Open Access

    ARTICLE

    Effect of Amine Type on Lignin Modification to Evaluate Its Reactivity in Polyol Construction for Non-Isocyanate Polyurethanes (NIPU)

    Saeed Kazemi Najafi1, Farhood Najafi2, Antonio Pizzi3,*, Fatemeh Hassani Khorshidi1,*, Rabi Behrooz1

    Journal of Renewable Materials, Vol.11, No.5, pp. 2171-2189, 2023, DOI:10.32604/jrm.2023.027835

    Abstract Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms, especially carbon-carbon and carbon-hydrogen. These compounds are mainly used as reactants to make other polymers. Among biopolymers, lignin is regarded as the base of a new polymer in polyol construction. The present study aimed to investigate the effects of amine type (diethylenetriamine and ethylenediamine) on the modification of lignin-based polyols, so as to provide an alternative to petroleum polyols and, in turn, increase functional groups and reduce their harm to humans’ health and the environment. To this aim, first, lignin was extracted from raw… More > Graphic Abstract

    Effect of Amine Type on Lignin Modification to Evaluate Its Reactivity in Polyol Construction for Non-Isocyanate Polyurethanes (NIPU)

  • Open Access

    ARTICLE

    Nanolignin, a Coupling Bio-Agent for Wood-Plastic Composites

    Hamed Younesi-Kordkheili1,*, Antonio Pizzi2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2075-2083, 2023, DOI:10.32604/jrm.2023.026706

    Abstract The influence of nanolignin coupling bio-agent on some characteristics of polypropylene-wood flour composites was studied. Thus, nanolignin was prepared by the acidic method, and then different ratios of it (0, 1, 3 and 5 wt%) were added to a polypropylene-wood flour mixture. After mechanically mixing wood flour, nanolignin, and polypropylene, the mixture was injection molded. ASTM methods were used to measure the structural properties of nanolignin, and prepared composites’ water absorption, thickness swelling, bending modulus, and bending, tensile and impact strengths. Transforming the original lignin to nanolignin did not change the chemical bonds of the material. The addition of nanolignin… More >

  • Open Access

    ARTICLE

    Degradation of Alkaline Lignin in the Lactic Acid-Choline Chloride System under Mild Conditions

    Penghui Li1,2, Zhengwei Jiang2, Chi Yang2, Jianpeng Ren1,2, Bo Jiang1,2, Wenjuan Wu1,2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2233-2248, 2023, DOI:10.32604/jrm.2023.025279

    Abstract Lignin is a natural polymer, second only to cellulose in natural reserves. Degradation is one of the ways to achieve the high-value transformation of lignin. Deep eutectic solvent (DES) thermal degradation of lignin can be used as an excellent green degradation method. This paper introduces the degradation mechanism and effect of the lactic acid-choline chloride DES system in dissolving and degrading alkaline lignin, and the final solvent recovery. It can also be found from the scanning electron microscope (SEM) images that the surface of the degraded solid product is transformed from smooth to disordered. Fourier transform infrared (FTIR) spectroscopy and… More > Graphic Abstract

    Degradation of Alkaline Lignin in the Lactic Acid-Choline Chloride System under Mild Conditions

  • Open Access

    ARTICLE

    Fabricating Cationic Lignin Hydrogels for Dye Adsorption

    Chao Wang, Xuezhen Feng, Wanbing Li, Shibin Shang*, Haibo Zhang*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1793-1805, 2023, DOI:10.32604/jrm.2023.024521

    Abstract Due to the low content of adsorption-active groups in lignin, its application in the field of adsorption is limited. Herein, we first prepared cationic kraft lignin acrylate, from which a cationic lignin (CKLA) hydrogel was further prepared by cationic kraft lignin acrylate, acrylamide, and N, N’-methylenebisacrylamide. The morphology, compression properties and swelling properties of CKLA hydrogels were investigated. The prepared CKLA hydrogel was applied as an adsorbent for Congo red. The effect of CKLA hydrogel dosages, initial concentration of Congo red, and pH on adsorption efficiency was investigated. The maximum Congo red removal efficiency was obtained at the initial concentration… More >

Displaying 1-10 on page 1 of 48. Per Page