Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices

    So-Eun Jeon1, Ye-Sol Oh1, Yeon-Ji Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1669-1687, 2024, DOI:10.32604/cmes.2024.047239 - 20 May 2024

    Abstract With the advancement of wireless network technology, vast amounts of traffic have been generated, and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated. While signature-based detection methods, static analysis, and dynamic analysis techniques have been previously explored for malicious traffic detection, they have limitations in identifying diversified malware traffic patterns. Recent research has been focused on the application of machine learning to detect these patterns. However, applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process. In… More >

  • Open Access

    ARTICLE

    Machine Learning-Based Efficient Discovery of Software Vulnerability for Internet of Things

    So-Eun Jeon, Sun-Jin Lee, Il-Gu Lee*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2407-2419, 2023, DOI:10.32604/iasc.2023.039937 - 21 June 2023

    Abstract With the development of the 5th generation of mobile communication (5G) networks and artificial intelligence (AI) technologies, the use of the Internet of Things (IoT) has expanded throughout industry. Although IoT networks have improved industrial productivity and convenience, they are highly dependent on nonstandard protocol stacks and open-source-based, poorly validated software, resulting in several security vulnerabilities. However, conventional AI-based software vulnerability discovery technologies cannot be applied to IoT because they require excessive memory and computing power. This study developed a technique for optimizing training data size to detect software vulnerabilities rapidly while maintaining learning accuracy. More >

  • Open Access

    ARTICLE

    Efficient Key Management System Based Lightweight Devices in IoT

    T. Chindrella Priyadharshini1,*, D. Mohana Geetha2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1793-1808, 2022, DOI:10.32604/iasc.2022.020422 - 09 October 2021

    Abstract The Internet of Things (IoT) has changed our lives significantly. Although IoT provides new opportunities, security remains a key concern while providing various services. Existing research methodologies try to solve the security and time-consuming problem also exists. To solve those problems, this paper proposed a Hashed Advanced Encryption Standard (HAES) algorithm based efficient key management system for internet-based lightweight devices in IoT networks. The proposed method is mainly divided into two phases namely Data Owner (DO) and Data User (DU) phase. The DO phase consists of two processes namely authentication and secure data uploading. In… More >

Displaying 1-10 on page 1 of 3. Per Page